mirror of https://github.com/llvm/torch-mlir
[MLIR][TORCH] Add E2E support for ScalarImplicit, Int.Scalar op
This commit adds lowering of `aten.ScalarImplicit` and `aten.Int.Scalar` op. Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>pull/826/head snapshot-20220510.443
parent
12b3af70d3
commit
c69a1e5688
|
@ -6158,6 +6158,30 @@ def Torch_AtenIntFloatOp : Torch_Op<"aten.Int.float", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenIntScalarOp : Torch_Op<"aten.Int.Scalar", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::Int.Scalar : (Scalar) -> (int)`";
|
||||
let arguments = (ins
|
||||
AnyTorchScalarType:$a
|
||||
);
|
||||
let results = (outs
|
||||
Torch_IntType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenIntScalarOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||
}
|
||||
void AtenIntScalarOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 1, 1);
|
||||
}
|
||||
}];
|
||||
let hasFolder = 1;
|
||||
}
|
||||
|
||||
def Torch_Aten__RangeLengthOp : Torch_Op<"aten.__range_length", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
@ -7139,6 +7163,29 @@ def Torch_AtenCeilFloatOp : Torch_Op<"aten.ceil.float", [
|
|||
let hasFolder = 1;
|
||||
}
|
||||
|
||||
def Torch_AtenScalarImplicitOp : Torch_Op<"aten.ScalarImplicit", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::ScalarImplicit : (Tensor) -> (Scalar)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$a
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchScalarType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenScalarImplicitOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 1, 1);
|
||||
}
|
||||
void AtenScalarImplicitOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 1, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_Aten_SoftmaxBackwardDataOp : Torch_Op<"aten._softmax_backward_data", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -181,6 +181,20 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class ConvertAtenScalarImplicitOp
|
||||
: public OpConversionPattern<AtenScalarImplicitOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
LogicalResult
|
||||
matchAndRewrite(AtenScalarImplicitOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(op, adaptor.a());
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
void mlir::torch::torch_to_linalg::
|
||||
populateTensorScalarInteropPatternsAndLegality(TypeConverter &typeConverter,
|
||||
RewritePatternSet &patterns,
|
||||
|
@ -201,4 +215,6 @@ void mlir::torch::torch_to_linalg::
|
|||
patterns.add<ConvertAtenScalarToTensorLike>(typeConverter, context);
|
||||
target.addIllegalOp<PrimNumToTensorScalarOp>();
|
||||
patterns.add<ConvertPrimNumToTensorScalarOp>(typeConverter, context);
|
||||
patterns.add<ConvertAtenScalarImplicitOp>(typeConverter, context);
|
||||
target.addIllegalOp<AtenScalarImplicitOp>();
|
||||
}
|
||||
|
|
|
@ -1019,6 +1019,23 @@ OpFoldResult AtenFloatScalarOp::fold(ArrayRef<Attribute> operands) {
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// AtenIntScalarOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
OpFoldResult AtenIntScalarOp::fold(ArrayRef<Attribute> operands) {
|
||||
// Constant fold float -> int conversion.
|
||||
if (auto floatAttr = operands[0].dyn_cast_or_null<FloatAttr>()) {
|
||||
return IntegerAttr::get(
|
||||
mlir::IntegerType::get(getContext(), 64, IntegerType::Signed),
|
||||
static_cast<long>(floatAttr.getValue().convertToDouble()));
|
||||
}
|
||||
// If the input is int type already, the op is an identity.
|
||||
if (getType() == getOperand().getType())
|
||||
return getOperand();
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// NonValueTensorLiteralOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
|
|
@ -426,6 +426,9 @@ private:
|
|||
ChangeResult
|
||||
visitBinaryScalarOp(Operation *op,
|
||||
ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
||||
ChangeResult visitAtenScalarImplicitOp(
|
||||
AtenScalarImplicitOp op,
|
||||
ArrayRef<LatticeElement<ValueKnowledge> *> operands);
|
||||
};
|
||||
} // namespace
|
||||
|
||||
|
@ -982,6 +985,9 @@ ChangeResult TypeAnalyzer::visitOperation(
|
|||
return visitBinaryScalarOp(op, operands);
|
||||
}
|
||||
|
||||
if (auto scalarImplicit = dyn_cast<AtenScalarImplicitOp>(op))
|
||||
return visitAtenScalarImplicitOp(scalarImplicit, operands);
|
||||
|
||||
// Otherwise, this is an unknown operation. Just mark all results as
|
||||
// having reached a pessimistic fixpoint.
|
||||
return markAllPessimisticFixpoint(op->getResults());
|
||||
|
@ -1249,6 +1255,19 @@ ChangeResult TypeAnalyzer::visitAten_SoftmaxLikeOp(
|
|||
return incorporateKnowledge(op.getResult(), knowledge);
|
||||
}
|
||||
|
||||
ChangeResult TypeAnalyzer::visitAtenScalarImplicitOp(
|
||||
AtenScalarImplicitOp op,
|
||||
ArrayRef<LatticeElement<ValueKnowledge> *> operands) {
|
||||
auto knowledge =
|
||||
ValueKnowledge::getScalarPessimisticValueState(op.getContext());
|
||||
Type dType = operands[0]->getValue().dtype;
|
||||
if (dType.isa<mlir::FloatType>())
|
||||
knowledge.setScalarType(Torch::FloatType::get(op->getContext()));
|
||||
else if (dType.isa<mlir::IntegerType>())
|
||||
knowledge.setScalarType(Torch::IntType::get(op->getContext()));
|
||||
return incorporateKnowledge(op->getResult(0), knowledge);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
// Transforms.
|
||||
// -----------------------------------------------------------------------------
|
||||
|
|
|
@ -477,6 +477,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
emit("aten::Float.Scalar : (Scalar) -> (float)", has_folder=True)
|
||||
emit("aten::Float.str : (str) -> (float)")
|
||||
emit("aten::Int.float : (float) -> (int)")
|
||||
emit("aten::Int.Scalar : (Scalar) -> (int)", has_folder=True)
|
||||
|
||||
# Primitive ops
|
||||
emit("aten::__range_length : (int, int, int) -> (int)", has_folder=True)
|
||||
|
@ -522,6 +523,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
|
||||
emit("aten::eq.device : (Device, Device) -> (bool)")
|
||||
emit("aten::ceil.float : (float) -> (int)", has_folder=True)
|
||||
emit("aten::ScalarImplicit : (Tensor) -> (Scalar)")
|
||||
|
||||
# backprop ops
|
||||
emit("aten::_softmax_backward_data : (Tensor, Tensor, int, int) -> (Tensor)")
|
||||
|
|
|
@ -621,6 +621,7 @@ def EmbeddingModuleI64_basic(module, tu: TestUtils):
|
|||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class EmbeddingModuleI32(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
|
@ -1816,8 +1817,10 @@ class ToCopyWithDTypeFalsePinMemoryModule(torch.nn.Module):
|
|||
def ToCopyWithDTypeFalsePinMemoryModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 2, 4))
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class FlipModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
|
@ -1857,3 +1860,43 @@ class DetachModule(torch.nn.Module):
|
|||
module_factory=lambda: DetachModule())
|
||||
def DetachModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 2, 4))
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ScalarImplicitFloatModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([], torch.float64, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return float(torch.ops.aten.ScalarImplicit(x))
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ScalarImplicitFloatModule())
|
||||
def ScalarImplicitFloatModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand().double())
|
||||
|
||||
|
||||
class ScalarImplicitIntModule(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([], torch.int64, True),
|
||||
])
|
||||
def forward(self, x):
|
||||
return int(torch.ops.aten.ScalarImplicit(x))
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ScalarImplicitIntModule())
|
||||
def ScalarImplicitIntModule_basic(module, tu: TestUtils):
|
||||
module.forward(torch.randint(-100, 100, ()))
|
||||
|
|
Loading…
Reference in New Issue