mirror of https://github.com/llvm/torch-mlir
parent
66de821eaf
commit
d46f169c1a
|
@ -0,0 +1,99 @@
|
|||
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
# See https://llvm.org/LICENSE.txt for license information.
|
||||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
# Also available under a BSD-style license. See LICENSE.
|
||||
|
||||
# RUN: %PYTHON %s | FileCheck %s
|
||||
|
||||
|
||||
import torch
|
||||
|
||||
from framework import run_test
|
||||
from torch_mlir.eager_mode.torch_mlir_dispatch import (
|
||||
annotate_args_kwargs,
|
||||
normalize_args_kwargs,
|
||||
build_script_function,
|
||||
)
|
||||
|
||||
|
||||
# CHECK: Torch Tensor (shape=(1, 3, 32, 32), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(1, 3, 32, 32), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(1, 3, 32, 32), dtype=torch.float32)
|
||||
# -----
|
||||
# CHECK: PASS - simple
|
||||
@run_test
|
||||
def simple():
|
||||
target = torch.ops.aten.addmm.default
|
||||
A = torch.randn(1, 3, 32, 32)
|
||||
B = torch.randn(1, 3, 32, 32)
|
||||
C = torch.randn(1, 3, 32, 32)
|
||||
args = (A, B, C)
|
||||
kwargs = dict(beta=1, alpha=1)
|
||||
|
||||
new_args, new_kwargs = normalize_args_kwargs(target.overloadpacket, args, kwargs)
|
||||
script_fun = build_script_function(target._schema, new_args, new_kwargs)
|
||||
annotations, *_ = annotate_args_kwargs(script_fun, new_args, new_kwargs)
|
||||
for annot in annotations:
|
||||
print(annot)
|
||||
|
||||
|
||||
# CHECK: Torch Tensor (shape=(-1, 3, 32, 32), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(-1, 3, 32, 32), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(-1, 3, 32, 32), dtype=torch.float32)
|
||||
# -----
|
||||
# CHECK: PASS - handle_zero_dim
|
||||
@run_test
|
||||
def handle_zero_dim():
|
||||
target = torch.ops.aten.addmm.default
|
||||
A = torch.randn(0, 3, 32, 32)
|
||||
B = torch.randn(0, 3, 32, 32)
|
||||
C = torch.randn(0, 3, 32, 32)
|
||||
args = (A, B, C)
|
||||
kwargs = dict(beta=1, alpha=1)
|
||||
|
||||
new_args, new_kwargs = normalize_args_kwargs(target.overloadpacket, args, kwargs)
|
||||
script_fun = build_script_function(target._schema, new_args, new_kwargs)
|
||||
annotations, *_ = annotate_args_kwargs(script_fun, new_args, new_kwargs)
|
||||
for annot in annotations:
|
||||
print(annot)
|
||||
|
||||
|
||||
# CHECK: Torch Tensor (shape=(2, 5, 2, 3), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(5,), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(5,), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(5,), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(5,), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(2, 5, 2, 3), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(5,), dtype=torch.float32)
|
||||
# CHECK: Torch Tensor (shape=(5,), dtype=torch.float32)
|
||||
# -----
|
||||
# CHECK: PASS - correctly_order_kwargs
|
||||
@run_test
|
||||
def correctly_order_kwargs():
|
||||
target = torch.ops.aten.native_batch_norm.out
|
||||
|
||||
input = torch.randn(2, 5, 2, 3)
|
||||
weight = torch.randn(5)
|
||||
bias = torch.randn(5)
|
||||
running_mean = torch.randn(5)
|
||||
running_var = torch.randn(5)
|
||||
args = (input, weight, bias, running_mean, running_var)
|
||||
|
||||
out = torch.empty_like(input)
|
||||
save_mean = torch.empty_like(running_mean)
|
||||
save_invstd = torch.empty_like(running_var)
|
||||
|
||||
kwargs = dict(
|
||||
training=False,
|
||||
momentum=0.1,
|
||||
eps=0.0001,
|
||||
out=out,
|
||||
save_mean=save_mean,
|
||||
save_invstd=save_invstd,
|
||||
)
|
||||
|
||||
new_args, new_kwargs = normalize_args_kwargs(target.overloadpacket, args, kwargs)
|
||||
script_fun = build_script_function(target._schema, new_args, new_kwargs)
|
||||
annotations, *_ = annotate_args_kwargs(script_fun, new_args, new_kwargs)
|
||||
for annot in annotations:
|
||||
print(annot)
|
|
@ -168,8 +168,7 @@ def annotate_args_kwargs(
|
|||
if isinstance(arg, np.ndarray):
|
||||
tensor_kwargs[arg_idxs[kw]] = (arg, normalized_kwargs[kw].dtype)
|
||||
|
||||
for i in range(len(tensor_kwargs)):
|
||||
arg, arg_dtype = tensor_kwargs[i]
|
||||
for _i, (arg, arg_dtype) in sorted(tensor_kwargs.items()):
|
||||
annotations.append(TorchTensorType(shape=tuple(arg.shape), dtype=arg_dtype))
|
||||
tensor_kwargs_flat.append(arg)
|
||||
|
||||
|
|
Loading…
Reference in New Issue