[MLIR][TORCH] Add E2E support for `aten.[div.int|bitwise_or.Tensor]` ops

This commit adds lowering of `aten.div.int` and `aten.bitwise_or.Tensor`
ops. Both these ops are required in order to support bloom_560m model.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
pull/1472/head
Gaurav Shukla 2022-10-06 18:41:52 +05:30
parent 2e0d806bf7
commit da90a25f90
12 changed files with 205 additions and 14 deletions

View File

@ -574,6 +574,7 @@ LTC_XFAIL_SET = {
"LiftFreshCopyModule_basic",
"Matmul_dot",
"MulIntModule_basic",
"DivIntModule_basic",
"NeFloatIntModule_basic",
"NeIntModule_basic",
"NewEmptyModuleDefaultDtype_basic",

View File

@ -2192,6 +2192,53 @@ def Torch_AtenBitwiseAnd_TensorOp : Torch_Op<"aten.bitwise_and_.Tensor", [
}];
}
def Torch_AtenBitwiseOrTensorOp : Torch_Op<"aten.bitwise_or.Tensor", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::bitwise_or.Tensor : (Tensor, Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$other
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenBitwiseOrTensorOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 2, 1);
}
void AtenBitwiseOrTensorOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
}
def Torch_AtenBitwiseOr_TensorOp : Torch_Op<"aten.bitwise_or_.Tensor", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::bitwise_or_.Tensor : (Tensor, Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$other
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenBitwiseOr_TensorOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 2, 1);
}
void AtenBitwiseOr_TensorOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
}
def Torch_AtenThresholdOp : Torch_Op<"aten.threshold", [
AllowsTypeRefinement,
HasValueSemantics,
@ -8405,6 +8452,31 @@ def Torch_AtenMulIntOp : Torch_Op<"aten.mul.int", [
let hasFolder = 1;
}
def Torch_AtenDivIntOp : Torch_Op<"aten.div.int", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::div.int : (int, int) -> (float)`";
let arguments = (ins
Torch_IntType:$a,
Torch_IntType:$b
);
let results = (outs
Torch_FloatType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenDivIntOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 2, 1);
}
void AtenDivIntOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
let hasFolder = 1;
}
def Torch_AtenNegIntOp : Torch_Op<"aten.neg.int", [
AllowsTypeRefinement,
HasValueSemantics,

View File

@ -121,6 +121,25 @@ public:
};
} // namespace
namespace {
class ConvertAtenDivIntOp : public OpConversionPattern<AtenDivIntOp> {
public:
using OpConversionPattern<AtenDivIntOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(AtenDivIntOp op,
typename OpConversionPattern<AtenDivIntOp>::OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value a =
convertScalarToDtype(rewriter, loc, adaptor.a(), rewriter.getF64Type());
Value b =
convertScalarToDtype(rewriter, loc, adaptor.b(), rewriter.getF64Type());
rewriter.replaceOpWithNewOp<arith::DivFOp>(op, a, b);
return success();
}
};
} // namespace
namespace {
// Lowers aten integer comparison ops.
template <typename AtenOp, arith::CmpIPredicate Pred>
@ -374,6 +393,8 @@ public:
target.addIllegalOp<AtenSubFloatOp>();
patterns.add<ConvertAtenBinaryOp<AtenSubFloatOp, arith::SubFOp>>(
typeConverter, context);
target.addIllegalOp<AtenDivIntOp>();
patterns.add<ConvertAtenDivIntOp>(typeConverter, context);
target.addIllegalOp<AtenDivFloatOp>();
patterns.add<ConvertAtenBinaryOp<AtenDivFloatOp, arith::DivFOp>>(
typeConverter, context);

View File

@ -199,6 +199,22 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<arith::AndIOp>(loc, lhs, rhs);
}
if (auto bitwiseOrTensor = dyn_cast<AtenBitwiseOrTensorOp>(op)) {
if (bitwiseOrTensor.getType()
.cast<ValueTensorType>()
.getDtype()
.isa<mlir::FloatType>()) {
bitwiseOrTensor.emitError(
"Bitwise_Or does not support floating point dtype");
return nullptr;
}
Type dtype = converter->convertType(bitwiseOrTensor.getType())
.cast<RankedTensorType>()
.getElementType();
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], dtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<arith::OrIOp>(loc, lhs, rhs);
}
if (auto logicalOr = dyn_cast<AtenLogicalOrOp>(op)) {
MLIRContext *context = op->getContext();
Type floatDtype = mlir::FloatType::getF64(context);
@ -1006,12 +1022,12 @@ public:
AtenSqrtOp, AtenFloorOp, AtenPowTensorScalarOp,
AtenPowTensorTensorOp, AtenLog2Op, AtenLog1pOp, AtenRsqrtOp,
AtenDivScalarOp, AtenRemainderScalarOp, AtenAbsOp,
AtenReciprocalOp, AtenBitwiseAndTensorOp, AtenGtScalarOp,
AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp, AtenLeScalarOp,
AtenWhereSelfOp, AtenCeilOp, AtenGtTensorOp, AtenEqTensorOp,
AtenLtTensorOp, AtenSubScalarOp, AtenAddScalarOp, AtenThresholdOp,
AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp, AtenCosOp,
AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp,
AtenReciprocalOp, AtenBitwiseAndTensorOp, AtenBitwiseOrTensorOp,
AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp,
AtenLeScalarOp, AtenWhereSelfOp, AtenCeilOp, AtenGtTensorOp,
AtenEqTensorOp, AtenLtTensorOp, AtenSubScalarOp, AtenAddScalarOp,
AtenThresholdOp, AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp,
AtenCosOp, AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp,
AtenMaskedFillTensorOp, AtenLogicalOrOp, AtenTriuOp,
AtenBitwiseNotOp>(op))
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
@ -1483,10 +1499,10 @@ void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
AtenLogOp, AtenErfOp, AtenSqrtOp, AtenFloorOp, AtenCeilOp,
AtenPowTensorScalarOp, AtenPowTensorTensorOp, AtenLog2Op, AtenLog1pOp,
AtenRsqrtOp, AtenAbsOp, AtenReciprocalOp, AtenBitwiseAndTensorOp,
AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp,
AtenLeScalarOp, AtenWhereSelfOp, AtenGtTensorOp, AtenEqTensorOp,
AtenLtTensorOp, AtenThresholdOp, AtenThresholdBackwardOp, AtenCloneOp,
AtenSinOp, AtenCosOp, AtenNeScalarOp, AtenMaskedFillScalarOp,
AtenBitwiseOrTensorOp, AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp,
AtenLtScalarOp, AtenLeScalarOp, AtenWhereSelfOp, AtenGtTensorOp,
AtenEqTensorOp, AtenLtTensorOp, AtenThresholdOp, AtenThresholdBackwardOp,
AtenCloneOp, AtenSinOp, AtenCosOp, AtenNeScalarOp, AtenMaskedFillScalarOp,
AtenMaskedFillTensorOp, AtenLogicalOrOp, AtenTriuOp,
AtenRemainderScalarOp, AtenBitwiseNotOp>();
patterns.add<ConvertElementwiseOp>(typeConverter, context);

View File

@ -2175,6 +2175,20 @@ OpFoldResult AtenDivFloatOp::fold(ArrayRef<Attribute> operands) {
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenDivIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDivIntOp::fold(ArrayRef<Attribute> operands) {
int64_t lhs, rhs;
bool lConstant = matchPattern(getOperand(0), m_TorchConstantInt(&lhs));
bool rConstant = matchPattern(getOperand(1), m_TorchConstantInt(&rhs));
if (lConstant && rConstant)
return getF64FloatAttr(getContext(), double(lhs) / rhs);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenCeilFloatOp
//===----------------------------------------------------------------------===//
@ -2185,8 +2199,6 @@ OpFoldResult AtenCeilFloatOp::fold(ArrayRef<Attribute> operands) {
return nullptr;
}
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// PrimMaxIntOp
//===----------------------------------------------------------------------===//

View File

@ -767,8 +767,8 @@ void TypeAnalysis::visitOperation(Operation *op,
// Promote the two dtypes assuming possibly-zero rank.
if (isa<AtenAddTensorOp, AtenSubTensorOp, AtenMulTensorOp, AtenDivTensorOp,
AtenDivTensorModeOp, Aten__And__TensorOp, AtenMinimumOp,
AtenMaximumOp, AtenBitwiseAndTensorOp, AtenThresholdBackwardOp,
AtenFloorDivideOp>(op)) {
AtenMaximumOp, AtenBitwiseAndTensorOp, AtenBitwiseOrTensorOp,
AtenThresholdBackwardOp, AtenFloorDivideOp>(op)) {
auto knowledge =
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
knowledge.dtype = getPromotedResultType(

View File

@ -6383,6 +6383,10 @@ StringRef mlir::torch::Torch::getShapeLibrary() {
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.bitwise_or.Tensor\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.bitwise_and.Tensor\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"

View File

@ -866,6 +866,9 @@ def atenminimum(self: List[int], other: List[int]) -> List[int]:
def atenmaximum(self: List[int], other: List[int]) -> List[int]:
return upstream_shape_functions.broadcast(self, other)
def atenbitwise_orTensor(self: List[int], other: List[int]) -> List[int]:
return upstream_shape_functions.broadcast(self, other)
def atenbitwise_andTensor(self: List[int], other: List[int]) -> List[int]:
return upstream_shape_functions.broadcast(self, other)

View File

@ -287,6 +287,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
"aten::abs : (Tensor) -> (Tensor)",
"aten::reciprocal : (Tensor) -> (Tensor)",
"aten::bitwise_and.Tensor : (Tensor, Tensor) -> (Tensor)",
"aten::bitwise_or.Tensor : (Tensor, Tensor) -> (Tensor)",
"aten::threshold : (Tensor, Scalar, Scalar) -> (Tensor)",
"aten::square : (Tensor) -> (Tensor)",
"aten::unsqueeze : (Tensor, int) -> (Tensor)",
@ -570,6 +571,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
emit("aten::add.int : (int, int) -> (int)", has_folder=True)
emit("aten::sub.int : (int, int) -> (int)", has_folder=True)
emit("aten::mul.int : (int, int) -> (int)", has_folder=True)
emit("aten::div.int : (int, int) -> (float)", has_folder=True)
emit("aten::neg.int : (int) -> (int)", has_folder=True)
emit("aten::log.int : (int) -> (float)")
emit("aten::add.float_int : (float, int) -> (float)")

View File

@ -1553,6 +1553,31 @@ def ElementwiseAndIntegerModule_basic(module, tu: TestUtils):
# ==============================================================================
class ElementwiseOrIntegerModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.int32, True),
([-1, -1], torch.int64, True),
])
def forward(self, x, y):
return torch.bitwise_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseOrIntegerModule())
def ElementwiseOrIntegerModule_basic(module, tu: TestUtils):
module.forward(
tu.randint(3, 4, low=-10, high=10).to(torch.int32),
tu.randint(3, 4, low=-10, high=10))
# ==============================================================================
class ElementwiseNotIntegerModule(torch.nn.Module):
def __init__(self):

View File

@ -104,6 +104,31 @@ def MulIntModule_basic(module, tu: TestUtils):
# ==============================================================================
class DivIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([], torch.int64, True),
([], torch.int64, True),
])
def forward(self, lhs, rhs):
# Cast the result to float to make e2e test baseline result to be a float.
# Without the cast, baseline result is a Tensor which is unexpected.
return float(torch.ops.aten.div(int(lhs), int(rhs)))
@register_test_case(module_factory=lambda: DivIntModule())
def DivIntModule_basic(module, tu: TestUtils):
module.forward(tu.randint(low=-10, high=10), tu.randint(low=3, high=10))
# ==============================================================================
class DivFloatModule(torch.nn.Module):
def __init__(self):

View File

@ -1351,6 +1351,16 @@ func.func @torch.aten.div.float$fold_cst_operands() -> !torch.float {
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.div.int$fold_cst_operands(
// CHECK: %[[CST:.*]] = torch.constant.float 5.000000e-01
// CHECK: return %[[CST]] : !torch.float
func.func @torch.aten.div.int$fold_cst_operands() -> !torch.float {
%int2 = torch.constant.int 2
%int4 = torch.constant.int 4
%0 = torch.aten.div.int %int2, %int4 : !torch.int, !torch.int -> !torch.float
return %0 : !torch.float
}
// CHECK-LABEL: func.func @torch.aten.to.dtype_layout$same_dtype(
// CHECK-SAME: %[[ARG:.*]]: !torch.tensor<[?,?],f32>) -> !torch.tensor<[?,?],f32> {
// CHECK-NEXT: return %[[ARG]] : !torch.tensor<[?,?],f32>