Support for prims collapse op (lowering to linalg) (#2572)

Steps taken:
1) add generator code to torch_ods_gen.py, run update_torch_ods.sh
2) add (custom) shape and type inference generator code to
abstract_interp_lib_gen.py, run update_abstract_interp_lib.sh
3) Implement lowering to tensor.collapse_dims. Requires the `start` and
`end` values to be constant, else lowering fails
4) Update xfail_sets.py (append to LTC_XFAIL_SET) after running
/tools/e2e_test.sh --filter Collapse --verbose -c XX for all support
backends (XX).

Motivation: 
- Supporting the collapse operation will be useful for lowering of
pixel_shuffle (see Issue #2559)
pull/2563/head
James Newling 2023-11-15 08:34:38 -08:00 committed by GitHub
parent 6be9789f9f
commit e81282ae8f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 323 additions and 0 deletions

View File

@ -14185,6 +14185,31 @@ def Torch_PrimsSqrtOp : Torch_Op<"prims.sqrt", [
}];
}
def Torch_PrimsCollapseOp : Torch_Op<"prims.collapse", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `prims::collapse : (Tensor, int, int) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$a,
Torch_IntType:$start,
Torch_IntType:$end
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult PrimsCollapseOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 3, 1);
}
void PrimsCollapseOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 3, 1);
}
}];
}
def Torch_PrimsSqueezeOp : Torch_Op<"prims.squeeze", [
AllowsTypeRefinement,
ReadOnly

View File

@ -25,6 +25,7 @@
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/APSInt.h"
#include <numeric>
using namespace mlir;
using namespace mlir::torch;
@ -1298,6 +1299,7 @@ public:
// nll_loss_forward[i] = -(input[i][indi]);
// TODO: `weight`operand is still to be taken care of.
namespace {
class ConvertAtenNllLossForwardOp
: public OpConversionPattern<AtenNllLossForwardOp> {
public:
@ -1757,6 +1759,71 @@ public:
};
} // namespace
namespace {
class ConvertPrimsCollapseOp : public OpConversionPattern<PrimsCollapseOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(PrimsCollapseOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
return failure();
auto aRankedTensorType = adaptor.getA().getType().cast<RankedTensorType>();
const TypeConverter *typeConverter = getTypeConverter();
auto resultRankedTensorType =
typeConverter->convertType(op.getType()).cast<RankedTensorType>();
// Collapse range must be statically known.
int64_t startInt;
if (!matchPattern(op.getStart(), m_TorchConstantInt(&startInt)))
return failure();
int64_t endInt;
if (!matchPattern(op.getEnd(), m_TorchConstantInt(&endInt)))
return failure();
// Upstream MLIR is overly strict -- it fails verification if the
// collapse_shape is the identity op (i.e. when no dimensions are
// collapsed). We manually fold this case here.
if (startInt == endInt) {
rewriter.replaceOp(op, adaptor.getA());
return success();
}
SmallVector<ReassociationIndices> associations;
associations.reserve(resultRankedTensorType.getRank());
// An example of is where input shape is [3,4,5,6] and
// start = 1, and end = 2. The collapsed shape is then [3,4*5,6],
// with reassociation indices of [0], [1,2], and [3].
// Append the singleton dimensions before the collapsed dimensions.
for (unsigned i = 0; i < startInt; ++i) {
associations.push_back(ReassociationIndices{i});
}
// Append the collapsed dimensions.
ReassociationIndices collapseDims(endInt + 1 - startInt);
std::iota(collapseDims.begin(), collapseDims.end(), startInt);
associations.push_back(collapseDims);
// Append the singleton dimensions after the collapsed dimensions.
for (int i = endInt + 1; i < aRankedTensorType.getRank(); ++i) {
associations.push_back(ReassociationIndices{i});
}
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(
op, resultRankedTensorType, adaptor.getA(), associations);
return success();
}
};
} // namespace
namespace {
class ConvertTensorStaticInfoCastOp
: public OpConversionPattern<TensorStaticInfoCastOp> {
@ -1805,6 +1872,10 @@ void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
patterns.add<ConvertAtenNllLossForwardOp>(typeConverter, context);
target.addIllegalOp<AtenBatchNormOp>();
patterns.add<ConvertAtenBatchNormOp>(typeConverter, context);
target.addIllegalOp<PrimsCollapseOp>();
patterns.add<ConvertPrimsCollapseOp>(typeConverter, context);
target.addIllegalOp<AtenNllLossBackwardOp>();
patterns.add<ConvertAtenNllLossBackwardOp>(typeConverter, context);
patterns.add<ConvertTensorStaticInfoCastOp>(typeConverter, context);

View File

@ -6461,6 +6461,80 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.prims.collapse\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.int) -> !torch.list<int> {\n"
" %true = torch.constant.bool true\n"
" %str = torch.constant.str \"AssertionError: start must be less than or equal to end\"\n"
" %str_0 = torch.constant.str \"AssertionError: end out of bounds\"\n"
" %none = torch.constant.none\n"
" %str_1 = torch.constant.str \"AssertionError: start out of bounds\"\n"
" %int0 = torch.constant.int 0\n"
" %int1 = torch.constant.int 1\n"
" %0 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
" %1 = torch.aten.le.int %arg1, %0 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If %1 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str_1, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %2 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
" %3 = torch.aten.le.int %arg2, %2 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If %3 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %4 = torch.aten.ge.int %arg1, %int0 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If %4 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str_1, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %5 = torch.aten.ge.int %arg2, %int0 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If %5 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %6 = torch.aten.le.int %arg1, %arg2 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If %6 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %7 = torch.prim.ListConstruct : () -> !torch.list<int>\n"
" torch.prim.Loop %arg1, %true, init() {\n"
" ^bb0(%arg3: !torch.int):\n"
" %15 = torch.aten.__getitem__.t %arg0, %arg3 : !torch.list<int>, !torch.int -> !torch.int\n"
" %16 = torch.aten.append.t %7, %15 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
" torch.prim.Loop.condition %true, iter()\n"
" } : (!torch.int, !torch.bool) -> ()\n"
" %8 = torch.aten.add.int %arg2, %int1 : !torch.int, !torch.int -> !torch.int\n"
" %9 = torch.aten.__range_length %arg1, %8, %int1 : !torch.int, !torch.int, !torch.int -> !torch.int\n"
" %10 = torch.prim.Loop %9, %true, init(%int1) {\n"
" ^bb0(%arg3: !torch.int, %arg4: !torch.int):\n"
" %15 = torch.aten.__derive_index %arg3, %arg1, %int1 : !torch.int, !torch.int, !torch.int -> !torch.int\n"
" %16 = torch.aten.__getitem__.t %arg0, %15 : !torch.list<int>, !torch.int -> !torch.int\n"
" %17 = torch.aten.mul.int %arg4, %16 : !torch.int, !torch.int -> !torch.int\n"
" torch.prim.Loop.condition %true, iter(%17 : !torch.int)\n"
" } : (!torch.int, !torch.bool, !torch.int) -> !torch.int\n"
" %11 = torch.aten.append.t %7, %10 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
" %12 = torch.aten.add.int %arg2, %int1 : !torch.int, !torch.int -> !torch.int\n"
" %13 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
" %14 = torch.aten.__range_length %12, %13, %int1 : !torch.int, !torch.int, !torch.int -> !torch.int\n"
" torch.prim.Loop %14, %true, init() {\n"
" ^bb0(%arg3: !torch.int):\n"
" %15 = torch.aten.__derive_index %arg3, %12, %int1 : !torch.int, !torch.int, !torch.int -> !torch.int\n"
" %16 = torch.aten.__getitem__.t %arg0, %15 : !torch.list<int>, !torch.int -> !torch.int\n"
" %17 = torch.aten.append.t %7, %16 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
" torch.prim.Loop.condition %true, iter()\n"
" } : (!torch.int, !torch.bool) -> ()\n"
" return %7 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.to.dtype\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.bool, %arg3: !torch.bool, %arg4: !torch.optional<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
@ -11295,6 +11369,10 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.prims.collapse\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.int, %arg2: !torch.int) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"
" }\n"
"}\n"
"";
// clang-format on

View File

@ -1355,6 +1355,11 @@ LTC_CRASHING_SET = {
}
LTC_XFAIL_SET = {
"CollapseAllDimensionsModule_basic",
"CollapseRank1DynamicModule_basic",
"CollapseStaticModule_basic",
"CollapsePartialDynamicModule_basic",
"CollapseFullDynamicModule_basic",
"PixelShuffleModuleStaticRank3Int64_basic",
"PixelShuffleModuleStaticRank4Float32_basic",
"_Convolution2DAllFalseModule_basic",

View File

@ -177,6 +177,8 @@ def atenglu〡shape(self: List[int], dim: int = -1) -> List[int]:
assert self[dim] % 2 == 0, "glu's dim size must be multiply of 2"
return self[:dim] + [self[dim] // 2] + self[dim+1:]
def aten_softmax〡shape(self: List[int], dim: int, half_to_float: bool) -> List[int]:
return upstream_shape_functions.unary(self)
@ -204,6 +206,40 @@ def atenrsubScalar〡shape(self: List[int], other: float, alpha: float = 1
def primsconvert_element_type〡shape(a: List[int], dtype: int) -> List[int]:
return upstream_shape_functions.unary(a)
def primscollapse〡shape(a: List[int], start: int, end: int) -> List[int]:
# Obtained through trial and error on a few examples in PyTorch:
assert start <= len(a), "start out of bounds"
assert end <= len(a), "end out of bounds"
assert start >= 0, "start out of bounds"
assert end >= 0, "end out of bounds"
assert start <= end, "start must be less than or equal to end"
# Example:
#
# torch._prims.collapse(torch.empty(2,3,4), 1,2).shape
# is
# torch.Size([2, 12])
collapsed: List[int] = []
for i in range(start):
collapsed.append(a[i])
# For the example, here collapsed is [2]
combined = 1
for i in range(start, end + 1):
combined *= a[i]
collapsed.append(combined)
# For the example, here collapsed is [2, 12]
for i in range(end + 1, len(a)):
collapsed.append(a[i])
# For the example, here collapsed is [2, 12]
return collapsed
def atentodtype〡shape(self: List[int], dtype: int, non_blocking: bool = False, copy: bool = False, memory_format: Optional[int] = None) -> List[int]:
return upstream_shape_functions.unary(self)
@ -905,6 +941,7 @@ def atensqueezedim〡shape(self: List[int], dim: int) -> List[int]:
def primssqueeze〡shape(a: List[int], dimensions: List[int]) -> List[int]:
return upstream_shape_functions.squeeze_dims(a, dimensions)
def primsview_of〡shape(a: List[int]) -> List[int]:
return a
@ -3693,6 +3730,12 @@ def primssqueeze〡dtype(a_rank_dtype: Tuple[int, int], dimensions: List[int]
return a_dtype
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, start=0, end = 0))
def primscollapse〡dtype(a_rank_dtype: Tuple[int, int], start: int, end: int) -> int:
a_rank, a_dtype = a_rank_dtype
return a_dtype
# ==============================================================================
# Main

View File

@ -817,6 +817,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
emit("prims::convert_element_type : (Tensor, int) -> (Tensor)")
emit("prims::var : (Tensor, int[]?, float, int?) -> (Tensor)")
emit("prims::sqrt : (Tensor) -> (Tensor)")
emit("prims::collapse : (Tensor, int, int) -> (Tensor)")
emit("prims::squeeze : (Tensor, int[]) -> (Tensor)")
emit("prims::view_of : (Tensor) -> (Tensor)", has_folder=True)

View File

@ -341,6 +341,7 @@ def ElementwiseUnsqueezeBroadcastModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand())
# ==============================================================================

View File

@ -122,6 +122,105 @@ class ViewDynamicExpandModule(torch.nn.Module):
def ViewDynamicExpandModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2, 4, 30, 384))
# ==============================================================================
#
class CollapseAllDimensionsModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([2,2,2,2], torch.float32, True)])
def forward(self, a):
return torch.ops.prims.collapse(a, 0, 3)
@register_test_case(
module_factory=lambda: CollapseAllDimensionsModule())
def CollapseAllDimensionsModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2,2,2,2))
# ==============================================================================
#
class CollapseRank1DynamicModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True)])
def forward(self, a):
return torch.ops.prims.collapse(a, 0, 0)
@register_test_case(
module_factory=lambda: CollapseRank1DynamicModule())
def CollapseRank1DynamicModule_basic(module, tu: TestUtils):
module.forward(tu.rand(5))
# ==============================================================================
#
class CollapseStaticModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([2,3,4], torch.float32, True)])
def forward(self, a):
return torch.ops.prims.collapse(a, 1, 2)
@register_test_case(
module_factory=lambda: CollapseStaticModule())
def CollapseStaticModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2,3,4))
# ==============================================================================
#
class CollapsePartialDynamicModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1,-1,4,5], torch.float32, True)])
def forward(self, a):
return torch.ops.prims.collapse(a, 1, 2)
@register_test_case(
module_factory=lambda: CollapsePartialDynamicModule())
def CollapsePartialDynamicModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2,3,4,5))
class CollapseFullDynamicModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1,-1,-1], torch.float32, True)])
def forward(self, a):
return torch.ops.prims.collapse(a, 0,1)
@register_test_case(
module_factory=lambda: CollapseFullDynamicModule())
def CollapseFullDynamicModule_basic(module, tu: TestUtils):
module.forward(tu.rand(2,3,5))
# ==============================================================================
class ViewDynamicExpandWithAtenSizeIntModule(torch.nn.Module):