mirror of https://github.com/llvm/torch-mlir
[Torch Dialect] Add Support for aten.unflatten.int (#2475)
As title, Add support for aten.unflatten.int, support dim to be negative and one of the sizes' elements to be -1pull/2539/head snapshot-20231031.1008
parent
b88f9ec8f2
commit
e8706957c0
|
@ -17,7 +17,6 @@ LINALG_XFAIL_SET = COMMON_TORCH_MLIR_LOWERING_XFAILS | {
|
|||
# Lowering Torch Backend IR -> Linalg-on-Tensors Backend IR failed
|
||||
# 'linalg.depthwise_conv_2d_nchw_chw' op inferred input/output operand #1 has shape's dimension #0 to be 4, but found 8
|
||||
"Conv2dWithPaddingDilationStrideStaticModule_depthwise_multiplier",
|
||||
"UnflattenStaticModule_basic",
|
||||
"IscloseStaticModule_basic",
|
||||
"IscloseStaticModuleTrue_basic",
|
||||
}
|
||||
|
@ -705,6 +704,10 @@ STABLEHLO_PASS_SET = {
|
|||
"ElementwiseToDtypeIdentityModule_basic",
|
||||
"View1DFoldModule_basic",
|
||||
"UnsafeView1DFoldModule_basic",
|
||||
"UnflattenStaticModule_basic",
|
||||
"UnflattenIntStaticModule_basic",
|
||||
"UnflattenIntNegativeOneDimStaticModule_basic",
|
||||
"UnflattenIntNegativeOneSizeStaticModule_basic",
|
||||
"RsubFloatModule_basic",
|
||||
"RsubFloatModule_noalpha_basic",
|
||||
"RsubIntModule_basic",
|
||||
|
@ -994,6 +997,9 @@ TOSA_PASS_SET = {
|
|||
"AtenToDeviceModule_basic",
|
||||
"View1DFoldModule_basic",
|
||||
"UnsafeView1DFoldModule_basic",
|
||||
"UnflattenIntStaticModule_basic",
|
||||
"UnflattenIntNegativeOneDimStaticModule_basic",
|
||||
"UnflattenIntNegativeOneSizeStaticModule_basic",
|
||||
"SqueezeDimModule_static",
|
||||
"SqueezeDimModule_identity",
|
||||
"SqueezeDimModule_unitDim",
|
||||
|
|
|
@ -7240,13 +7240,25 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.unflatten.int\"(%arg0: !torch.list<int>, %arg1: !torch.int, %arg2: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %none = torch.constant.none\n"
|
||||
" %int0 = torch.constant.int 0\n"
|
||||
" %int1 = torch.constant.int 1\n"
|
||||
" %0 = torch.aten.slice.t %arg0, %none, %arg1, %int1 : !torch.list<int>, !torch.none, !torch.int, !torch.int -> !torch.list<int>\n"
|
||||
" %1 = torch.aten.add.t %0, %arg2 : !torch.list<int>, !torch.list<int> -> !torch.list<int>\n"
|
||||
" %2 = torch.aten.add.int %arg1, %int1 : !torch.int, !torch.int -> !torch.int\n"
|
||||
" %3 = torch.aten.slice.t %arg0, %2, %none, %int1 : !torch.list<int>, !torch.int, !torch.none, !torch.int -> !torch.list<int>\n"
|
||||
" %4 = torch.aten.add.t %1, %3 : !torch.list<int>, !torch.list<int> -> !torch.list<int>\n"
|
||||
" return %4 : !torch.list<int>\n"
|
||||
" %0 = torch.aten.lt.int %arg1, %int0 : !torch.int, !torch.int -> !torch.bool\n"
|
||||
" %1 = torch.prim.If %0 -> (!torch.int) {\n"
|
||||
" %10 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
|
||||
" %11 = torch.aten.add.int %arg1, %10 : !torch.int, !torch.int -> !torch.int\n"
|
||||
" torch.prim.If.yield %11 : !torch.int\n"
|
||||
" } else {\n"
|
||||
" torch.prim.If.yield %arg1 : !torch.int\n"
|
||||
" }\n"
|
||||
" %2 = torch.aten.__getitem__.t %arg0, %1 : !torch.list<int>, !torch.int -> !torch.int\n"
|
||||
" %3 = torch.prim.ListConstruct %2 : (!torch.int) -> !torch.list<int>\n"
|
||||
" %4 = call @__torch__.torch.jit._shape_functions.view(%3, %arg2) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
" %5 = torch.aten.slice.t %arg0, %none, %1, %int1 : !torch.list<int>, !torch.none, !torch.int, !torch.int -> !torch.list<int>\n"
|
||||
" %6 = torch.aten.add.t %5, %4 : !torch.list<int>, !torch.list<int> -> !torch.list<int>\n"
|
||||
" %7 = torch.aten.add.int %1, %int1 : !torch.int, !torch.int -> !torch.int\n"
|
||||
" %8 = torch.aten.slice.t %arg0, %7, %none, %int1 : !torch.list<int>, !torch.int, !torch.none, !torch.int -> !torch.list<int>\n"
|
||||
" %9 = torch.aten.add.t %6, %8 : !torch.list<int>, !torch.list<int> -> !torch.list<int>\n"
|
||||
" return %9 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.linear\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>, %arg2: !torch.optional<list<int>>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.linear(%arg0, %arg1, %arg2) : (!torch.list<int>, !torch.list<int>, !torch.optional<list<int>>) -> !torch.list<int>\n"
|
||||
|
|
|
@ -1494,6 +1494,100 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
// Decompose aten.unflatten.int into aten.view op.
|
||||
namespace {
|
||||
class DecomposeAtenUnflattenIntOp
|
||||
: public OpRewritePattern<AtenUnflattenIntOp> {
|
||||
public:
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenUnflattenIntOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
Value self = op.getSelf();
|
||||
MLIRContext *context = op.getContext();
|
||||
BaseTensorType outputTensorType = op.getType().cast<BaseTensorType>();
|
||||
if (!outputTensorType.hasSizes())
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "unimplemented: output must have known sizes");
|
||||
|
||||
std::optional<unsigned> maybeRank = getTensorRank(self);
|
||||
if (!maybeRank)
|
||||
return rewriter.notifyMatchFailure(op, "unimplemented: unranked tensor");
|
||||
unsigned inputRank = *maybeRank;
|
||||
auto inputTensorType = self.getType().cast<Torch::ValueTensorType>();
|
||||
if (!inputTensorType || !inputTensorType.hasSizes()) {
|
||||
return rewriter.notifyMatchFailure(op,
|
||||
"Expected input type having sizes");
|
||||
}
|
||||
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
|
||||
|
||||
SmallVector<int64_t> sizesInts;
|
||||
if (!matchPattern(op.getSizes(), m_TorchListOfConstantInts(sizesInts)))
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "sizes must be a list of constant ints");
|
||||
|
||||
bool inferred = false;
|
||||
if (llvm::count(sizesInts, -1) > 1)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "only one of sizes' elements can be -1");
|
||||
|
||||
int64_t dimInt;
|
||||
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dimInt)))
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "unimplemented: requires dim to be constants");
|
||||
|
||||
dimInt = toPositiveDim(dimInt, inputRank);
|
||||
if (!isValidDim(dimInt, inputRank))
|
||||
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
||||
|
||||
SmallVector<Value> sizesTorchInt;
|
||||
if (!getListConstructElements(op.getSizes(), sizesTorchInt))
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "Unimplemented: sizes not list of Scalar");
|
||||
|
||||
// Create new sizes based on the unflattened dimension.
|
||||
SmallVector<Value> newSizes;
|
||||
for (int64_t i = 0; i < inputRank; ++i) {
|
||||
Value dimValue =
|
||||
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(i));
|
||||
Value dimSize =
|
||||
rewriter.create<AtenSizeIntOp>(loc, self, /*dim=*/dimValue);
|
||||
if (i == dimInt) {
|
||||
int64_t inferredSizeInt = inputShape[i];
|
||||
int64_t inferredDim;
|
||||
for (unsigned j = 0; j < sizesInts.size(); ++j) {
|
||||
if (sizesInts[j] == -1) {
|
||||
inferred = true;
|
||||
inferredDim = j;
|
||||
} else {
|
||||
Value sizeValue = rewriter.create<ConstantIntOp>(
|
||||
loc, rewriter.getI64IntegerAttr(sizesInts[j]));
|
||||
newSizes.push_back(sizeValue);
|
||||
inferredSizeInt = inferredSizeInt / sizesInts[j];
|
||||
}
|
||||
}
|
||||
if (inferred) {
|
||||
Value inferredSize =
|
||||
rewriter.create<ConstantIntOp>(
|
||||
loc, rewriter.getI64IntegerAttr(inferredSizeInt));
|
||||
newSizes.insert(
|
||||
newSizes.begin() + inferredDim + i, inferredSize);
|
||||
}
|
||||
} else {
|
||||
newSizes.push_back(dimSize);
|
||||
}
|
||||
}
|
||||
|
||||
// Create the AtenViewOp to replace the original op.
|
||||
Value newSizeList = rewriter.create<PrimListConstructOp>(
|
||||
loc, ListType::get(IntType::get(context)), newSizes);
|
||||
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), op.getSelf(),
|
||||
newSizeList);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
// Decompose aten.expand into aten.broadcast_to op.
|
||||
namespace {
|
||||
class DecomposeAtenExpandOp : public OpRewritePattern<AtenExpandOp> {
|
||||
|
@ -5237,6 +5331,7 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAtenRepeatOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenExpandOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenFlattenUsingIntsOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenUnflattenIntOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenWhereScalarOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenWhereScalarOtherOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenWhereScalarSelfOp>(patterns);
|
||||
|
|
|
@ -376,6 +376,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenRepeatOp>();
|
||||
target.addIllegalOp<AtenExpandOp>();
|
||||
target.addIllegalOp<AtenFlattenUsingIntsOp>();
|
||||
target.addIllegalOp<AtenUnflattenIntOp>();
|
||||
target.addIllegalOp<AtenWhereScalarOp>();
|
||||
target.addIllegalOp<AtenWhereScalarOtherOp>();
|
||||
target.addIllegalOp<AtenWhereScalarSelfOp>();
|
||||
|
|
|
@ -629,8 +629,18 @@ def aten〇adaptive_avg_pool2d〡shape(self: List[int], output_size: List[int])
|
|||
def aten〇flatten〇using_ints〡shape(self: List[int], start_dim: int = 0, end_dim: int = -1) -> List[int]:
|
||||
return upstream_shape_functions.flatten(self, start_dim, end_dim)
|
||||
|
||||
@check_shape_function([
|
||||
Invocation(TensorOfShape(3, 6, 8), 1, [3, 2]),
|
||||
Invocation(TensorOfShape(3, 6, 8), 1, [3, -1]), # contain one -1 in sizes
|
||||
Invocation(TensorOfShape(3, 6, 8), -1, [2, -1, 2]), # dim = -1
|
||||
])
|
||||
def aten〇unflatten〇int〡shape(self: List[int], dim: int, sizes: List[int]) -> List[int]:
|
||||
return self[:dim] + sizes + self[dim + 1:]
|
||||
if dim < 0:
|
||||
dim += len(self)
|
||||
unflatten_shape: List[int] = [self[dim]]
|
||||
unflatten_shape_output = upstream_shape_functions.view(unflatten_shape, sizes)
|
||||
shape: List[int] = []
|
||||
return self[:dim] + unflatten_shape_output + self[dim+1:]
|
||||
|
||||
def aten〇linear〡shape(input: List[int], weight: List[int], bias: Optional[List[int]] = None) -> List[int]:
|
||||
return upstream_shape_functions.linear(input, weight, bias)
|
||||
|
@ -1668,7 +1678,7 @@ def aten〇flatten〇using_ints〡dtype(self_rank_dtype: Tuple[int, int], start_
|
|||
self_rank, self_dtype = self_rank_dtype
|
||||
return self_dtype
|
||||
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, dim=0, sizes=[1]))
|
||||
@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, dim=0, sizes=[-1]))
|
||||
def aten〇unflatten〇int〡dtype(self_rank_dtype: Tuple[int, int], dim: int, sizes: List[int]) -> int:
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
return self_dtype
|
||||
|
|
|
@ -813,3 +813,56 @@ class ReshapeAliasCollapseModule(torch.nn.Module):
|
|||
@register_test_case(module_factory=lambda: ReshapeAliasCollapseModule())
|
||||
def ReshapeAliasCollapseModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(2, 4))
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
class UnflattenIntStaticModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([3, 24, 5], torch.float32, True),
|
||||
])
|
||||
|
||||
def forward(self, inputs):
|
||||
return torch.ops.aten.unflatten(inputs, 1, [2, 4, 3])
|
||||
|
||||
@register_test_case(module_factory=lambda: UnflattenIntStaticModule())
|
||||
def UnflattenIntStaticModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(3, 24, 5))
|
||||
|
||||
class UnflattenIntNegativeOneDimStaticModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([5, 12, 3], torch.float32, True),
|
||||
])
|
||||
|
||||
def forward(self, inputs):
|
||||
return torch.ops.aten.unflatten(inputs, -2, [2, 2, 3, 1, 1])
|
||||
|
||||
@register_test_case(module_factory=lambda: UnflattenIntNegativeOneDimStaticModule())
|
||||
def UnflattenIntNegativeOneDimStaticModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(5, 12, 3))
|
||||
|
||||
class UnflattenIntNegativeOneSizeStaticModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args([
|
||||
None,
|
||||
([5, 12, 3], torch.float32, True),
|
||||
])
|
||||
|
||||
def forward(self, inputs):
|
||||
return torch.ops.aten.unflatten(inputs, -2, [2, -1, 3, 1, 1])
|
||||
|
||||
@register_test_case(module_factory=lambda: UnflattenIntNegativeOneSizeStaticModule())
|
||||
def UnflattenIntNegativeOneSizeStaticModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(5, 12, 3))
|
||||
|
|
Loading…
Reference in New Issue