Eager mode description in the README and small example and ResNet18 example. (#707)

pull/711/head
Maksim Levental 2022-03-28 23:54:06 -05:00 committed by GitHub
parent 520725cdc5
commit eecbf0bab6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 131 additions and 0 deletions

View File

@ -131,6 +131,14 @@ jupyter notebook
The LazyTensorCore integration is still in progress, and is being built on the
[`torch_mlir_ltc_backend` branch](https://github.com/llvm/torch-mlir/tree/torch_mlir_ltc_backend).
### Eager Mode
Eager mode with TorchMLIR is a very experimental eager mode backend for PyTorch through the torch-mlir framework.
Effectively, this mode works by compiling operator by operator as the NN is eagerly executed by PyTorch.
This mode includes a fallback to conventional PyTorch if anything in the torch-mlir compilation process fails (e.g., unsupported operator).
A simple example can be found at [eager_mode.py](examples/eager_mode.py).
A ResNet18 example can be found at [eager_mode_resnet18.py](examples/eager_mode_resnet18.py).
## Repository Layout
The project follows the conventions of typical MLIR-based projects:

View File

@ -0,0 +1,34 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import torch
from torch_mlir.eager_mode.torch_mlir_tensor import TorchMLIRTensor
torch_a = torch.randn(5, requires_grad=True)
torch_b = torch.randn(5, requires_grad=True)
torch_c = torch_a + torch_b
torch_d = torch_a * torch_b
torch_e = torch_c / torch_d
torch_loss = torch_e.sum()
print("PyTorch loss: ", torch_loss)
torch_loss.backward()
print("PyTorch grad a: ", torch_a.grad)
print("PyTorch grad b: ", torch_b.grad)
a = TorchMLIRTensor(torch_a)
b = TorchMLIRTensor(torch_b)
c = a + b
d = a * b
e = c / d
loss = e.sum()
print("Torch-MLIR loss: ", loss)
loss.backward()
print("Torch-MLIR grad a: ", a.grad)
print("Torch-MLIR grad b: ", b.grad)

View File

@ -0,0 +1,89 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import sys
import requests
import torch
import torchvision.models as models
from PIL import Image
from torchvision import transforms
from torch_mlir.eager_mode.torch_mlir_tensor import TorchMLIRTensor
def load_and_preprocess_image(url: str):
headers = {
'User-Agent':
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'
}
img = Image.open(requests.get(url, headers=headers,
stream=True).raw).convert("RGB")
# preprocessing pipeline
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
img_preprocessed = preprocess(img)
return torch.unsqueeze(img_preprocessed, 0)
def load_labels():
classes_text = requests.get(
"https://raw.githubusercontent.com/cathyzhyi/ml-data/main/imagenet-classes.txt",
stream=True,
).text
labels = [line.strip() for line in classes_text.splitlines()]
return labels
def top3_possibilities(res):
_, indexes = torch.sort(res, descending=True)
percentage = torch.nn.functional.softmax(res, dim=1)[0] * 100
top3 = [(labels[idx], percentage[idx].item()) for idx in indexes[0][:3]]
return top3
def predictions(torch_func, img, labels):
golden_prediction = top3_possibilities(torch_func(img))
print("PyTorch prediction")
print(golden_prediction)
prediction = top3_possibilities(torch_func(TorchMLIRTensor(img)))
print("torch-mlir prediction")
print(prediction)
class ResNet18Module(torch.nn.Module):
def __init__(self):
super().__init__()
self.resnet = models.resnet18(pretrained=True)
self.train(False)
def forward(self, img):
return self.resnet.forward(img)
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.s = ResNet18Module()
def forward(self, x):
return self.s.forward(x)
image_url = (
"https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg"
)
print("load image from " + image_url, file=sys.stderr)
img = load_and_preprocess_image(image_url)
labels = load_labels()
test_module = TestModule()
predictions(test_module.forward, img, labels)