mirror of https://github.com/llvm/torch-mlir
First step of move common jit_ir_importer.
parent
606dc45896
commit
f1d9136210
|
@ -0,0 +1 @@
|
|||
add_subdirectory(csrc/jit_ir_importer)
|
|
@ -0,0 +1,26 @@
|
|||
# Static library with core functionality.
|
||||
# We can't use a shared library here, due to issues with linking on macOS-arm64 (the library itself won't build)
|
||||
# For details, see: https://github.com/llvm/torch-mlir/runs/7919012376
|
||||
add_library(TorchMLIRJITIRImporter STATIC
|
||||
class_annotator.cpp
|
||||
function_importer.cpp
|
||||
node_importer.cpp
|
||||
ivalue_importer.cpp
|
||||
torch_to_mlir_utils.cpp
|
||||
)
|
||||
target_link_libraries(TorchMLIRJITIRImporter
|
||||
TorchMLIRAggregateCAPI
|
||||
${TORCH_LIBRARIES}
|
||||
)
|
||||
# Includes are relative to the csrc dir (i.e. #include "jit_ir_importer/...")
|
||||
target_include_directories(TorchMLIRJITIRImporter PUBLIC
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/..
|
||||
)
|
||||
set_target_properties(TorchMLIRJITIRImporter PROPERTIES
|
||||
LIBRARY_OUTPUT_DIRECTORY "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir/_mlir_libs"
|
||||
OUTPUT_NAME lib_jit_ir_importer
|
||||
PREFIX ""
|
||||
SUFFIX ".a"
|
||||
CXX_VISIBILITY_PRESET "default"
|
||||
COMPILE_FLAGS "${TORCH_CXXFLAGS}"
|
||||
)
|
|
@ -18,8 +18,8 @@ using namespace torch_mlir;
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// Prefix every line of `s` with `linePrefix`.
|
||||
static std::string
|
||||
indentString(const std::string& linePrefix, const std::string& s) {
|
||||
static std::string indentString(const std::string &linePrefix,
|
||||
const std::string &s) {
|
||||
std::stringstream is(s);
|
||||
std::stringstream os;
|
||||
std::string line;
|
||||
|
@ -39,28 +39,26 @@ ClassAnnotation::ClassAnnotation(c10::ClassTypePtr classType)
|
|||
methodAnnotations.resize(classType->methods().size());
|
||||
}
|
||||
|
||||
std::vector<AttributeAnnotation>& ClassAnnotation::getAttributeAnnotations() {
|
||||
std::vector<AttributeAnnotation> &ClassAnnotation::getAttributeAnnotations() {
|
||||
// Halfhearted attempt to ensure consistency if the class type has
|
||||
// been mutated.
|
||||
//
|
||||
// We can't easily guard against attributes being removed and
|
||||
// then other attributes being added, or types changed, etc. without
|
||||
// effectively mirroring the entire ClassType.
|
||||
assert(
|
||||
attributeAnnotations.size() == classType->getAttributes().size() &&
|
||||
"annotations out of sync. class has been mutated");
|
||||
assert(attributeAnnotations.size() == classType->getAttributes().size() &&
|
||||
"annotations out of sync. class has been mutated");
|
||||
|
||||
return attributeAnnotations;
|
||||
}
|
||||
|
||||
std::vector<MethodAnnotation>& ClassAnnotation::getMethodAnnotations() {
|
||||
std::vector<MethodAnnotation> &ClassAnnotation::getMethodAnnotations() {
|
||||
// Halfhearted attempt to ensure consistency if the class type has
|
||||
// been mutated.
|
||||
//
|
||||
// We can't easily guard against methods being removed, added, or changed.
|
||||
assert(
|
||||
methodAnnotations.size() == classType->methods().size() &&
|
||||
"annotations out of sync. class has been mutated");
|
||||
assert(methodAnnotations.size() == classType->methods().size() &&
|
||||
"annotations out of sync. class has been mutated");
|
||||
|
||||
return methodAnnotations;
|
||||
}
|
||||
|
@ -69,17 +67,17 @@ std::vector<MethodAnnotation>& ClassAnnotation::getMethodAnnotations() {
|
|||
// ClassAnnotator
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static void
|
||||
exportNoneRecurse(ClassAnnotator& classAnnotator, c10::ClassType* classType) {
|
||||
ClassAnnotation& classAnnotation =
|
||||
static void exportNoneRecurse(ClassAnnotator &classAnnotator,
|
||||
c10::ClassType *classType) {
|
||||
ClassAnnotation &classAnnotation =
|
||||
classAnnotator.getOrCreateClassAnnotation(classType);
|
||||
for (auto& attributeAnnotation : classAnnotation.getAttributeAnnotations()) {
|
||||
for (auto &attributeAnnotation : classAnnotation.getAttributeAnnotations()) {
|
||||
attributeAnnotation.isExported = false;
|
||||
}
|
||||
for (auto& methodAnnotation : classAnnotation.getMethodAnnotations()) {
|
||||
for (auto &methodAnnotation : classAnnotation.getMethodAnnotations()) {
|
||||
methodAnnotation.isExported = false;
|
||||
}
|
||||
for (auto& classAttribute : classType->getAttributes()) {
|
||||
for (auto &classAttribute : classType->getAttributes()) {
|
||||
if (auto childClassType =
|
||||
classAttribute.getType()->cast<c10::ClassType>()) {
|
||||
exportNoneRecurse(classAnnotator, childClassType.get());
|
||||
|
@ -87,20 +85,20 @@ exportNoneRecurse(ClassAnnotator& classAnnotator, c10::ClassType* classType) {
|
|||
}
|
||||
}
|
||||
|
||||
void ClassAnnotator::exportNone(c10::ClassType& rootClassType) {
|
||||
void ClassAnnotator::exportNone(c10::ClassType &rootClassType) {
|
||||
exportNoneRecurse(*this, &rootClassType);
|
||||
}
|
||||
|
||||
void ClassAnnotator::exportPath(
|
||||
c10::ClassType& rootClassType, std::vector<std::string> exportedPath) {
|
||||
void ClassAnnotator::exportPath(c10::ClassType &rootClassType,
|
||||
std::vector<std::string> exportedPath) {
|
||||
if (exportedPath.size() == 0) {
|
||||
throw std::invalid_argument(
|
||||
"Empty exported path. Can only export a property of a class.");
|
||||
}
|
||||
c10::ClassType* classType = getClassAtPath(
|
||||
&rootClassType, c10::ArrayRef<std::string>(exportedPath)
|
||||
.slice(0, exportedPath.size() - 1)
|
||||
.vec());
|
||||
c10::ClassType *classType =
|
||||
getClassAtPath(&rootClassType, c10::ArrayRef<std::string>(exportedPath)
|
||||
.slice(0, exportedPath.size() - 1)
|
||||
.vec());
|
||||
|
||||
if (!classType->findAttribute(exportedPath.back()) &&
|
||||
!classType->findMethod(exportedPath.back())) {
|
||||
|
@ -110,10 +108,10 @@ void ClassAnnotator::exportPath(
|
|||
<< exportedPath.back() << "'";
|
||||
throw std::invalid_argument(ss.str());
|
||||
}
|
||||
ClassAnnotation& classAnnotation = getOrCreateClassAnnotation(classType);
|
||||
std::vector<AttributeAnnotation>& attributeAnnotations =
|
||||
ClassAnnotation &classAnnotation = getOrCreateClassAnnotation(classType);
|
||||
std::vector<AttributeAnnotation> &attributeAnnotations =
|
||||
classAnnotation.getAttributeAnnotations();
|
||||
const std::vector<c10::ClassAttribute>& classAttributes =
|
||||
const std::vector<c10::ClassAttribute> &classAttributes =
|
||||
classType->getAttributes();
|
||||
for (int i = 0, e = classAttributes.size(); i != e; i++) {
|
||||
if (classAttributes[i].getName() == exportedPath.back()) {
|
||||
|
@ -121,9 +119,9 @@ void ClassAnnotator::exportPath(
|
|||
}
|
||||
}
|
||||
|
||||
std::vector<MethodAnnotation>& methodAnnotations =
|
||||
std::vector<MethodAnnotation> &methodAnnotations =
|
||||
classAnnotation.getMethodAnnotations();
|
||||
const std::vector<torch::jit::Function*>& methods = classType->methods();
|
||||
const std::vector<torch::jit::Function *> &methods = classType->methods();
|
||||
for (int i = 0, e = methods.size(); i != e; i++) {
|
||||
if (methods[i]->name() == exportedPath.back()) {
|
||||
methodAnnotations[i].isExported = true;
|
||||
|
@ -131,12 +129,12 @@ void ClassAnnotator::exportPath(
|
|||
}
|
||||
}
|
||||
|
||||
const ClassAnnotationMap& ClassAnnotator::getAnnotationMap() {
|
||||
const ClassAnnotationMap &ClassAnnotator::getAnnotationMap() {
|
||||
return classAnnotations;
|
||||
}
|
||||
|
||||
ClassAnnotation&
|
||||
ClassAnnotator::getOrCreateClassAnnotation(c10::ClassType* classType) {
|
||||
ClassAnnotation &
|
||||
ClassAnnotator::getOrCreateClassAnnotation(c10::ClassType *classType) {
|
||||
auto className = classType->name()->qualifiedName();
|
||||
auto it = classAnnotations.find(className);
|
||||
if (it == classAnnotations.end()) {
|
||||
|
@ -151,39 +149,39 @@ ClassAnnotator::getOrCreateClassAnnotation(c10::ClassType* classType) {
|
|||
return *it->second;
|
||||
}
|
||||
|
||||
static void fillArgAnnotations(
|
||||
MethodAnnotation& methodAnnotation,
|
||||
std::vector<ArgAnnotation> argAnnotations, torch::jit::Function* function) {
|
||||
static void fillArgAnnotations(MethodAnnotation &methodAnnotation,
|
||||
std::vector<ArgAnnotation> argAnnotations,
|
||||
torch::jit::Function *function) {
|
||||
if (argAnnotations.size() != function->num_inputs()) {
|
||||
throw std::invalid_argument("Arg annotations should have one entry per "
|
||||
"function parameter (including self).");
|
||||
}
|
||||
if (!methodAnnotation.argAnnotations.has_value()) {
|
||||
methodAnnotation.argAnnotations.emplace(
|
||||
function->num_inputs(), ArgAnnotation{});
|
||||
methodAnnotation.argAnnotations.emplace(function->num_inputs(),
|
||||
ArgAnnotation{});
|
||||
}
|
||||
|
||||
methodAnnotation.argAnnotations = argAnnotations;
|
||||
}
|
||||
|
||||
void ClassAnnotator::annotateArgs(
|
||||
c10::ClassType& rootClassType, std::vector<std::string> path,
|
||||
std::vector<ArgAnnotation> argAnnotations) {
|
||||
void ClassAnnotator::annotateArgs(c10::ClassType &rootClassType,
|
||||
std::vector<std::string> path,
|
||||
std::vector<ArgAnnotation> argAnnotations) {
|
||||
if (path.size() == 0) {
|
||||
throw std::invalid_argument("Empty annotated path. Can only annotate "
|
||||
"shapes/dtypes of a method of a class.");
|
||||
}
|
||||
c10::ClassType* classType = getClassAtPath(
|
||||
c10::ClassType *classType = getClassAtPath(
|
||||
&rootClassType,
|
||||
c10::ArrayRef<std::string>(path).slice(0, path.size() - 1).vec());
|
||||
|
||||
// Throw error if no method on the class of the specified name.
|
||||
torch::jit::Function* function = &classType->getMethod(path.back());
|
||||
torch::jit::Function *function = &classType->getMethod(path.back());
|
||||
|
||||
ClassAnnotation& classAnnotation = getOrCreateClassAnnotation(classType);
|
||||
std::vector<MethodAnnotation>& methodAnnotations =
|
||||
ClassAnnotation &classAnnotation = getOrCreateClassAnnotation(classType);
|
||||
std::vector<MethodAnnotation> &methodAnnotations =
|
||||
classAnnotation.getMethodAnnotations();
|
||||
const std::vector<torch::jit::Function*>& methods = classType->methods();
|
||||
const std::vector<torch::jit::Function *> &methods = classType->methods();
|
||||
for (int i = 0, e = methods.size(); i != e; i++) {
|
||||
if (methods[i]->name() == path.back()) {
|
||||
fillArgAnnotations(methodAnnotations[i], argAnnotations, function);
|
||||
|
@ -193,9 +191,9 @@ void ClassAnnotator::annotateArgs(
|
|||
return;
|
||||
}
|
||||
|
||||
c10::ClassType* ClassAnnotator::getClassAtPath(
|
||||
c10::ClassType* rootClassType, std::vector<std::string> path) {
|
||||
c10::ClassType* classType = rootClassType;
|
||||
c10::ClassType *ClassAnnotator::getClassAtPath(c10::ClassType *rootClassType,
|
||||
std::vector<std::string> path) {
|
||||
c10::ClassType *classType = rootClassType;
|
||||
// Reverse so that pop_back gives us the initial atoms first.
|
||||
std::reverse(path.begin(), path.end());
|
||||
while (!path.empty()) {
|
||||
|
@ -217,8 +215,8 @@ c10::ClassType* ClassAnnotator::getClassAtPath(
|
|||
//===----------------------------------------------------------------------===//
|
||||
// Helper methods
|
||||
//===----------------------------------------------------------------------===//
|
||||
MethodAnnotation*
|
||||
ClassAnnotator::getMethodAnnotationForFunction(torch::jit::Function* function) {
|
||||
MethodAnnotation *
|
||||
ClassAnnotator::getMethodAnnotationForFunction(torch::jit::Function *function) {
|
||||
auto it = functionToMethodMap.find(function);
|
||||
if (it == functionToMethodMap.end()) {
|
||||
return nullptr;
|
||||
|
@ -230,7 +228,7 @@ ClassAnnotator::getMethodAnnotationForFunction(torch::jit::Function* function) {
|
|||
// toString methods
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
std::string AttributeAnnotation::toString(const std::string& name) {
|
||||
std::string AttributeAnnotation::toString(const std::string &name) {
|
||||
std::stringstream ss;
|
||||
ss << "AttributeAnnotation('" << name << "') {\n";
|
||||
ss << " isExported = " << (isExported ? "true" : "false") << "\n";
|
||||
|
@ -261,7 +259,7 @@ std::string ArgAnnotation::toString(int argIndex) {
|
|||
return ss.str();
|
||||
}
|
||||
|
||||
std::string MethodAnnotation::toString(const std::string& name) {
|
||||
std::string MethodAnnotation::toString(const std::string &name) {
|
||||
std::stringstream ss;
|
||||
ss << "MethodAnnotation('" << name << "') {\n";
|
||||
ss << " isExported = " << (isExported ? "true" : "false") << "\n";
|
||||
|
@ -282,13 +280,13 @@ std::string ClassAnnotation::toString() {
|
|||
std::stringstream ss;
|
||||
ss << "ClassAnnotation('" << classType->name()->qualifiedName() << "') {\n";
|
||||
|
||||
const std::vector<c10::ClassAttribute>& classAttributes =
|
||||
const std::vector<c10::ClassAttribute> &classAttributes =
|
||||
classType->getAttributes();
|
||||
for (int i = 0, e = classAttributes.size(); i != e; i++) {
|
||||
ss << indentString(
|
||||
" ", attributeAnnotations[i].toString(classAttributes[i].getName()));
|
||||
}
|
||||
const std::vector<torch::jit::Function*>& methods = classType->methods();
|
||||
const std::vector<torch::jit::Function *> &methods = classType->methods();
|
||||
for (int i = 0, e = methods.size(); i != e; i++) {
|
||||
ss << indentString(" ", methodAnnotations[i].toString(methods[i]->name()));
|
||||
}
|
||||
|
@ -299,7 +297,7 @@ std::string ClassAnnotation::toString() {
|
|||
std::string ClassAnnotator::toString() {
|
||||
std::stringstream ss;
|
||||
ss << "ClassAnnotator {\n";
|
||||
for (auto& p : classAnnotations) {
|
||||
for (auto &p : classAnnotations) {
|
||||
ss << indentString(" ", p.second->toString());
|
||||
}
|
||||
ss << "}\n";
|
|
@ -34,7 +34,7 @@ struct AttributeAnnotation {
|
|||
// can be externally accessed.
|
||||
bool isExported = true;
|
||||
|
||||
std::string toString(const std::string& name);
|
||||
std::string toString(const std::string &name);
|
||||
};
|
||||
|
||||
// An annotation of an argument of a method.
|
||||
|
@ -80,7 +80,7 @@ struct MethodAnnotation {
|
|||
// large printout of the default ArgAnnotation for every method.
|
||||
c10::optional<std::vector<ArgAnnotation>> argAnnotations;
|
||||
|
||||
std::string toString(const std::string& name);
|
||||
std::string toString(const std::string &name);
|
||||
};
|
||||
|
||||
// Annotations on a c10::ClassType.
|
||||
|
@ -107,10 +107,10 @@ public:
|
|||
|
||||
// Get the attribute annotations.
|
||||
// The length and order is the same as `classType->getAttributes()`.
|
||||
std::vector<AttributeAnnotation>& getAttributeAnnotations();
|
||||
std::vector<AttributeAnnotation> &getAttributeAnnotations();
|
||||
// Get the method annotations.
|
||||
// The length and order is the same as `classType->methods()`.
|
||||
std::vector<MethodAnnotation>& getMethodAnnotations();
|
||||
std::vector<MethodAnnotation> &getMethodAnnotations();
|
||||
|
||||
std::string toString();
|
||||
|
||||
|
@ -141,14 +141,14 @@ public:
|
|||
// For example, if `exportedPath = ['a', 'b']`, then `rootClassType` should
|
||||
// have a submodule `a` and that submodule should have a method or attribute
|
||||
// `b`.
|
||||
void exportPath(
|
||||
c10::ClassType& rootClassType, std::vector<std::string> exportedPath);
|
||||
void exportPath(c10::ClassType &rootClassType,
|
||||
std::vector<std::string> exportedPath);
|
||||
// Mark everything as not-exported.
|
||||
//
|
||||
// This is kind of useless by itself, but together with `exportPath` allows
|
||||
// exporting a subset of known names out of a larger collection of unknown
|
||||
// names.
|
||||
void exportNone(c10::ClassType& rootClassType);
|
||||
void exportNone(c10::ClassType &rootClassType);
|
||||
|
||||
// Annotate shapes and dtypes of the arguments of a method at path `path` from
|
||||
// `rootClassType`.
|
||||
|
@ -159,23 +159,23 @@ public:
|
|||
// a "has value semantics" boolean.
|
||||
// These will be put into an `ArgAnnotation` struct -- see there for
|
||||
// precise definitions of the promised semantics of each entry.
|
||||
void annotateArgs(
|
||||
c10::ClassType& rootClassType, std::vector<std::string> path,
|
||||
std::vector<ArgAnnotation> argAnnotations);
|
||||
void annotateArgs(c10::ClassType &rootClassType,
|
||||
std::vector<std::string> path,
|
||||
std::vector<ArgAnnotation> argAnnotations);
|
||||
|
||||
// The annotations collected so far.
|
||||
const ClassAnnotationMap& getAnnotationMap();
|
||||
const ClassAnnotationMap &getAnnotationMap();
|
||||
|
||||
// Get the ClassAnnotation corresponding to `classType`.
|
||||
ClassAnnotation& getOrCreateClassAnnotation(c10::ClassType* classType);
|
||||
ClassAnnotation &getOrCreateClassAnnotation(c10::ClassType *classType);
|
||||
|
||||
// Helper to find the MethodAnnotation corresponding to a
|
||||
// torch::jit::Function, or null if not found.
|
||||
//
|
||||
// Users could in principle scan all annotations to find this, but it's more
|
||||
// efficient to maintain the reverse mapping directly.
|
||||
MethodAnnotation*
|
||||
getMethodAnnotationForFunction(torch::jit::Function* function);
|
||||
MethodAnnotation *
|
||||
getMethodAnnotationForFunction(torch::jit::Function *function);
|
||||
|
||||
std::string toString();
|
||||
|
||||
|
@ -183,11 +183,11 @@ private:
|
|||
// Traverse `path` starting from `rootClassType` to find the ClassType
|
||||
// of a presumed nested submodule. Throw an error if there is no such
|
||||
// submodule.
|
||||
c10::ClassType*
|
||||
getClassAtPath(c10::ClassType* rootClassType, std::vector<std::string> path);
|
||||
c10::ClassType *getClassAtPath(c10::ClassType *rootClassType,
|
||||
std::vector<std::string> path);
|
||||
ClassAnnotationMap classAnnotations;
|
||||
// Reverse mapping used to service getMethodAnnotationForFunction.
|
||||
std::unordered_map<torch::jit::Function*, MethodAnnotation*>
|
||||
std::unordered_map<torch::jit::Function *, MethodAnnotation *>
|
||||
functionToMethodMap;
|
||||
};
|
||||
|
|
@ -21,9 +21,9 @@
|
|||
using namespace torch_mlir;
|
||||
|
||||
MlirOperation torch_mlir::importJitFunctionAsFuncOp(
|
||||
MlirContext context, torch::jit::Function* function,
|
||||
MlirContext context, torch::jit::Function *function,
|
||||
std::function<MlirAttribute(int)> getArgAttribute,
|
||||
const ImportOptions& importOptions) {
|
||||
const ImportOptions &importOptions) {
|
||||
// Useful for debugging:
|
||||
// graph->dump();
|
||||
MlirLocation loc = mlirLocationUnknownGet(context);
|
||||
|
@ -63,11 +63,10 @@ MlirOperation torch_mlir::importJitFunctionAsFuncOp(
|
|||
}
|
||||
auto createTerminator = [&](c10::ArrayRef<MlirValue> yieldedValues,
|
||||
MlirBlock appendToBlock) {
|
||||
createMlirOperationAtEnd(
|
||||
appendToBlock, "func.return", loc,
|
||||
adjustStaticInformationForValues(
|
||||
appendToBlock, loc, yieldedValues, resultTypes,
|
||||
/*userAllowsRefinement=*/false));
|
||||
createMlirOperationAtEnd(appendToBlock, "func.return", loc,
|
||||
adjustStaticInformationForValues(
|
||||
appendToBlock, loc, yieldedValues, resultTypes,
|
||||
/*userAllowsRefinement=*/false));
|
||||
};
|
||||
MlirBlock block = importBlock(
|
||||
context, torch::jit::toGraphFunction(*function).graph()->block(),
|
|
@ -40,10 +40,10 @@ namespace torch_mlir {
|
|||
/// null MlirAttribute is returned, no attribute will be attached to that
|
||||
/// argument.
|
||||
MlirOperation importJitFunctionAsFuncOp(
|
||||
MlirContext context, torch::jit::Function* function,
|
||||
MlirContext context, torch::jit::Function *function,
|
||||
std::function<MlirAttribute(int)> getArgAttribute =
|
||||
[](int) -> MlirAttribute { return {nullptr}; },
|
||||
const ImportOptions& importOptions = {});
|
||||
const ImportOptions &importOptions = {});
|
||||
|
||||
} // namespace torch_mlir
|
||||
|
|
@ -49,10 +49,10 @@ using namespace torch_mlir;
|
|||
// throw an error on).
|
||||
namespace {
|
||||
struct IValueHasher {
|
||||
size_t operator()(const c10::IValue& ivalue) const {
|
||||
size_t operator()(const c10::IValue &ivalue) const {
|
||||
if (ivalue.isObject() || ivalue.isList() || ivalue.isGenericDict()) {
|
||||
return std::hash<const void*>()(
|
||||
static_cast<const void*>(ivalue.internalToPointer()));
|
||||
return std::hash<const void *>()(
|
||||
static_cast<const void *>(ivalue.internalToPointer()));
|
||||
}
|
||||
|
||||
return c10::IValue::hash(ivalue);
|
||||
|
@ -65,7 +65,7 @@ struct IValueHasher {
|
|||
// such as when tracing). Can we do better?
|
||||
namespace {
|
||||
struct IValueEq {
|
||||
bool operator()(const c10::IValue& lhs, const c10::IValue& rhs) const {
|
||||
bool operator()(const c10::IValue &lhs, const c10::IValue &rhs) const {
|
||||
return lhs.isSameIdentity(rhs);
|
||||
}
|
||||
};
|
||||
|
@ -99,9 +99,8 @@ namespace {
|
|||
/// (PyTorch allows this!).
|
||||
class IValueImporter {
|
||||
public:
|
||||
IValueImporter(
|
||||
MlirBlock importBlock, MlirContext context, ClassAnnotator& annotator,
|
||||
const ImportOptions& importOptions)
|
||||
IValueImporter(MlirBlock importBlock, MlirContext context,
|
||||
ClassAnnotator &annotator, const ImportOptions &importOptions)
|
||||
: importBlock(importBlock), context(context), annotator(annotator),
|
||||
importOptions(importOptions) {}
|
||||
|
||||
|
@ -111,16 +110,15 @@ private:
|
|||
MlirValue rawImportIValue(c10::IValue ivalue);
|
||||
MlirValue importTensor(c10::IValue ivalue);
|
||||
MlirValue importModule(torch::jit::Module jitModule);
|
||||
void importMethod(
|
||||
torch::jit::Function* function, MlirBlock classTypeBody,
|
||||
const MethodAnnotation& methodAnnotation);
|
||||
void importClassType(c10::ClassType* classType);
|
||||
void importCompilationUnit(torch::jit::CompilationUnit* cu);
|
||||
void importMethod(torch::jit::Function *function, MlirBlock classTypeBody,
|
||||
const MethodAnnotation &methodAnnotation);
|
||||
void importClassType(c10::ClassType *classType);
|
||||
void importCompilationUnit(torch::jit::CompilationUnit *cu);
|
||||
|
||||
MlirBlock importBlock;
|
||||
MlirContext context;
|
||||
ClassAnnotator& annotator;
|
||||
const ImportOptions& importOptions;
|
||||
ClassAnnotator &annotator;
|
||||
const ImportOptions &importOptions;
|
||||
|
||||
// Map tracking already-imported values.
|
||||
std::unordered_map<c10::IValue, MlirValue, IValueHasher, IValueEq> valueMap;
|
||||
|
@ -131,16 +129,16 @@ private:
|
|||
// e.g. methods (the function names are meaningful and match with Python's
|
||||
// module hierarchy, with the exception of `__main__` being replaced with
|
||||
// `__torch__`).
|
||||
torch::jit::CompilationUnit* compilationUnit = nullptr;
|
||||
torch::jit::CompilationUnit *compilationUnit = nullptr;
|
||||
|
||||
// Used to detect potentially aliasing tensors.
|
||||
std::unordered_set<c10::StorageImpl*> seenStorageImpls;
|
||||
std::unordered_set<c10::StorageImpl *> seenStorageImpls;
|
||||
// The set of ClassType's that have already been imported.
|
||||
//
|
||||
// ClassType's are referenced via their `classType->name()->qualifiedName()`
|
||||
// string (as an MLIR symbol name) so we don't need to keep a map associating
|
||||
// them with the MlirOperation that they import into.
|
||||
std::unordered_set<c10::ClassType*> classTypes;
|
||||
std::unordered_set<c10::ClassType *> classTypes;
|
||||
// The stack of attribute names we have traversed to reach the current IValue.
|
||||
// Used for diagnostics.
|
||||
std::vector<std::string> attributeNameStack;
|
||||
|
@ -192,8 +190,8 @@ MlirValue IValueImporter::importModule(torch::jit::Module currentModule) {
|
|||
torchMlirTorchNnModuleTypeGet(context, toMlirStringRef(moduleTypeName)),
|
||||
mlirRegionCreate());
|
||||
MlirRegion nnModuleRegion = mlirOperationGetRegion(nnModule, 0);
|
||||
mlirRegionAppendOwnedBlock(
|
||||
nnModuleRegion, mlirBlockCreate(0, nullptr, nullptr));
|
||||
mlirRegionAppendOwnedBlock(nnModuleRegion,
|
||||
mlirBlockCreate(0, nullptr, nullptr));
|
||||
MlirBlock nnModuleBody = mlirRegionGetFirstBlock(nnModuleRegion);
|
||||
InserterGuard inserterGuard(importBlock, nnModule);
|
||||
|
||||
|
@ -201,14 +199,13 @@ MlirValue IValueImporter::importModule(torch::jit::Module currentModule) {
|
|||
rootModuleName = moduleTypeName;
|
||||
}
|
||||
|
||||
const std::vector<c10::IValue>& slots = currentModule._ivalue()->slots();
|
||||
const std::vector<c10::ClassAttribute>& classAttributes =
|
||||
const std::vector<c10::IValue> &slots = currentModule._ivalue()->slots();
|
||||
const std::vector<c10::ClassAttribute> &classAttributes =
|
||||
currentModule.type()->getAttributes();
|
||||
assert(
|
||||
slots.size() == classAttributes.size() &&
|
||||
"mismatch between object and type!");
|
||||
assert(slots.size() == classAttributes.size() &&
|
||||
"mismatch between object and type!");
|
||||
for (int i = 0, e = slots.size(); i < e; i++) {
|
||||
const c10::ClassAttribute& classAttribute = classAttributes[i];
|
||||
const c10::ClassAttribute &classAttribute = classAttributes[i];
|
||||
attributeNameStack.push_back(classAttribute.getName());
|
||||
MlirValue slotValue = importIValue(slots[i]);
|
||||
// TODO: Is it necessary to track whether an attribute is a "parameter"?
|
||||
|
@ -235,7 +232,7 @@ MlirValue IValueImporter::importIValue(c10::IValue ivalue) {
|
|||
}
|
||||
// Reject potentially aliased tensors.
|
||||
if (ivalue.isTensor()) {
|
||||
c10::StorageImpl* storageImpl =
|
||||
c10::StorageImpl *storageImpl =
|
||||
ivalue.toTensor().storage().unsafeGetStorageImpl();
|
||||
if (!seenStorageImpls.insert(storageImpl).second) {
|
||||
std::stringstream msg;
|
||||
|
@ -261,8 +258,8 @@ MlirValue IValueImporter::rawImportIValue(c10::IValue ivalue) {
|
|||
MlirType type = torchMlirTorchBoolTypeGet(context);
|
||||
MlirOperation operation = createMlirOperationAtEnd(
|
||||
importBlock, "torch.constant.bool", loc, type,
|
||||
toMlirNamedAttribute(
|
||||
"value", mlirBoolAttrGet(context, ivalue.toBool())));
|
||||
toMlirNamedAttribute("value",
|
||||
mlirBoolAttrGet(context, ivalue.toBool())));
|
||||
return mlirOperationGetResult(operation, 0);
|
||||
}
|
||||
if (ivalue.isDouble()) {
|
||||
|
@ -270,23 +267,23 @@ MlirValue IValueImporter::rawImportIValue(c10::IValue ivalue) {
|
|||
MlirOperation operation = createMlirOperationAtEnd(
|
||||
importBlock, "torch.constant.float", loc, type,
|
||||
toMlirNamedAttribute(
|
||||
"value", mlirFloatAttrDoubleGet(
|
||||
context, mlirF64TypeGet(context), ivalue.toDouble())));
|
||||
"value", mlirFloatAttrDoubleGet(context, mlirF64TypeGet(context),
|
||||
ivalue.toDouble())));
|
||||
return mlirOperationGetResult(operation, 0);
|
||||
}
|
||||
if (ivalue.isInt()) {
|
||||
MlirType type = torchMlirTorchIntTypeGet(context);
|
||||
MlirOperation operation = createMlirOperationAtEnd(
|
||||
importBlock, "torch.constant.int", loc, type,
|
||||
toMlirNamedAttribute(
|
||||
"value", mlirIntegerAttrGet(
|
||||
mlirIntegerTypeGet(context, 64), ivalue.toInt())));
|
||||
toMlirNamedAttribute("value",
|
||||
mlirIntegerAttrGet(mlirIntegerTypeGet(context, 64),
|
||||
ivalue.toInt())));
|
||||
return mlirOperationGetResult(operation, 0);
|
||||
}
|
||||
if (ivalue.isList()) {
|
||||
c10::List<c10::IValue> list = ivalue.toList();
|
||||
std::vector<MlirValue> elems;
|
||||
for (const c10::IValue& elem : list) {
|
||||
for (const c10::IValue &elem : list) {
|
||||
elems.push_back(importIValue(elem));
|
||||
}
|
||||
MlirOperation operation = createMlirOperationAtEnd(
|
||||
|
@ -316,7 +313,7 @@ MlirValue IValueImporter::rawImportIValue(c10::IValue ivalue) {
|
|||
auto list = ivalue.toTuple()->elements();
|
||||
std::vector<MlirValue> operands;
|
||||
std::vector<MlirType> types;
|
||||
for (const c10::IValue& elem : list) {
|
||||
for (const c10::IValue &elem : list) {
|
||||
MlirValue operand = importIValue(elem);
|
||||
operands.push_back(operand);
|
||||
types.push_back(mlirValueGetType(operand));
|
||||
|
@ -339,14 +336,14 @@ MlirValue IValueImporter::rawImportIValue(c10::IValue ivalue) {
|
|||
torchMlirTorchStringTypeGet(context),
|
||||
toMlirNamedAttribute(
|
||||
"value",
|
||||
mlirStringAttrGet(
|
||||
context, toMlirStringRef(ivalue.toString()->string()))));
|
||||
mlirStringAttrGet(context,
|
||||
toMlirStringRef(ivalue.toString()->string()))));
|
||||
return mlirOperationGetResult(operation, 0);
|
||||
}
|
||||
if (ivalue.isNone()) {
|
||||
MlirOperation operation = createMlirOperationAtEnd(
|
||||
importBlock, "torch.constant.none", loc,
|
||||
torchMlirTorchNoneTypeGet(context));
|
||||
MlirOperation operation =
|
||||
createMlirOperationAtEnd(importBlock, "torch.constant.none", loc,
|
||||
torchMlirTorchNoneTypeGet(context));
|
||||
return mlirOperationGetResult(operation, 0);
|
||||
}
|
||||
if (ivalue.isCustomClass()) {
|
||||
|
@ -440,12 +437,12 @@ MlirValue IValueImporter::importTensor(c10::IValue ivalue) {
|
|||
return tensorValue;
|
||||
}
|
||||
|
||||
void IValueImporter::importMethod(
|
||||
torch::jit::Function* function, MlirBlock classTypeBody,
|
||||
const MethodAnnotation& methodAnnotation) {
|
||||
void IValueImporter::importMethod(torch::jit::Function *function,
|
||||
MlirBlock classTypeBody,
|
||||
const MethodAnnotation &methodAnnotation) {
|
||||
// The function's name becomes the MLIR symbol table name of the imported func
|
||||
// when we import the compilation unit.
|
||||
const std::string& symName = function->qualname().qualifiedName();
|
||||
const std::string &symName = function->qualname().qualifiedName();
|
||||
MlirAttribute functionSymbolRef =
|
||||
mlirFlatSymbolRefAttrGet(context, toMlirStringRef(symName));
|
||||
|
||||
|
@ -461,7 +458,7 @@ void IValueImporter::importMethod(
|
|||
toMlirNamedAttribute("function", functionSymbolRef), isPrivate);
|
||||
}
|
||||
|
||||
void IValueImporter::importClassType(c10::ClassType* classType) {
|
||||
void IValueImporter::importClassType(c10::ClassType *classType) {
|
||||
if (!classTypes.insert(classType).second) {
|
||||
return;
|
||||
}
|
||||
|
@ -479,13 +476,13 @@ void IValueImporter::importClassType(c10::ClassType* classType) {
|
|||
mlirRegionAppendOwnedBlock(region, mlirBlockCreate(0, nullptr, nullptr));
|
||||
MlirBlock classTypeBody = mlirRegionGetFirstBlock(region);
|
||||
|
||||
ClassAnnotation& classAnnotation =
|
||||
ClassAnnotation &classAnnotation =
|
||||
annotator.getOrCreateClassAnnotation(classType);
|
||||
|
||||
const auto& attributeAnnotations = classAnnotation.getAttributeAnnotations();
|
||||
const auto& classAttributes = classType->getAttributes();
|
||||
const auto &attributeAnnotations = classAnnotation.getAttributeAnnotations();
|
||||
const auto &classAttributes = classType->getAttributes();
|
||||
for (int i = 0, e = classAttributes.size(); i != e; i++) {
|
||||
const c10::ClassAttribute& classAttribute = classAttributes[i];
|
||||
const c10::ClassAttribute &classAttribute = classAttributes[i];
|
||||
c10::optional<MlirNamedAttribute> isPrivate;
|
||||
if (!attributeAnnotations[i].isExported) {
|
||||
isPrivate = toMlirNamedAttribute("isPrivate", mlirUnitAttrGet(context));
|
||||
|
@ -501,8 +498,8 @@ void IValueImporter::importClassType(c10::ClassType* classType) {
|
|||
isPrivate);
|
||||
}
|
||||
|
||||
const auto& methodAnnotations = classAnnotation.getMethodAnnotations();
|
||||
const auto& methods = classType->methods();
|
||||
const auto &methodAnnotations = classAnnotation.getMethodAnnotations();
|
||||
const auto &methods = classType->methods();
|
||||
for (int i = 0, e = methods.size(); i != e; i++) {
|
||||
importMethod(methods[i], classTypeBody, methodAnnotations[i]);
|
||||
}
|
||||
|
@ -510,7 +507,7 @@ void IValueImporter::importClassType(c10::ClassType* classType) {
|
|||
createMlirOperationAtEnd(classTypeBody, "torch.class_type_terminator", loc);
|
||||
}
|
||||
|
||||
void IValueImporter::importCompilationUnit(torch::jit::CompilationUnit* cu) {
|
||||
void IValueImporter::importCompilationUnit(torch::jit::CompilationUnit *cu) {
|
||||
if (compilationUnit == nullptr) {
|
||||
compilationUnit = cu;
|
||||
} else {
|
||||
|
@ -529,14 +526,14 @@ void IValueImporter::importCompilationUnit(torch::jit::CompilationUnit* cu) {
|
|||
return;
|
||||
}
|
||||
|
||||
for (torch::jit::Function* function : cu->get_functions()) {
|
||||
for (torch::jit::Function *function : cu->get_functions()) {
|
||||
// Useful for debugging errors in free functions that end up being
|
||||
// unused. These can be missing when round-tripping through the on-disk
|
||||
// format, even though they still cause import issues when importing
|
||||
// through the larger Python session where they originate.
|
||||
// std::cerr << "NAME: " << function->qualname().qualifiedName() << "\n";
|
||||
// std::cerr << *torch::jit::toGraphFunction(function).graph();
|
||||
MethodAnnotation* annotation =
|
||||
MethodAnnotation *annotation =
|
||||
annotator.getMethodAnnotationForFunction(function);
|
||||
MlirOperation func = importJitFunctionAsFuncOp(
|
||||
context, function,
|
||||
|
@ -544,9 +541,9 @@ void IValueImporter::importCompilationUnit(torch::jit::CompilationUnit* cu) {
|
|||
if (!annotation || !annotation->argAnnotations.has_value()) {
|
||||
return {nullptr};
|
||||
}
|
||||
c10::optional<std::vector<int64_t>>& maybeShape =
|
||||
c10::optional<std::vector<int64_t>> &maybeShape =
|
||||
annotation->argAnnotations.value()[argIndex].shape;
|
||||
c10::optional<c10::ScalarType>& maybeDtype =
|
||||
c10::optional<c10::ScalarType> &maybeDtype =
|
||||
annotation->argAnnotations.value()[argIndex].dtype;
|
||||
bool hasValueSemantics =
|
||||
annotation->argAnnotations.value()[argIndex].hasValueSemantics;
|
||||
|
@ -566,10 +563,10 @@ void IValueImporter::importCompilationUnit(torch::jit::CompilationUnit* cu) {
|
|||
// the C API constructor, when we want the "we know we have 0 sizes"
|
||||
// case. So use a dummy data pointer.
|
||||
int64_t dummy;
|
||||
int64_t* shapeData = shape.size() == 0 ? &dummy : shape.data();
|
||||
int64_t *shapeData = shape.size() == 0 ? &dummy : shape.data();
|
||||
if (hasValueSemantics) {
|
||||
typeBound = torchMlirTorchValueTensorTypeGet(
|
||||
context, shape.size(), shapeData, dtype);
|
||||
typeBound = torchMlirTorchValueTensorTypeGet(context, shape.size(),
|
||||
shapeData, dtype);
|
||||
} else {
|
||||
typeBound = torchMlirTorchNonValueTensorTypeGet(
|
||||
context, shape.size(), shapeData, dtype);
|
||||
|
@ -597,9 +594,10 @@ void IValueImporter::importCompilationUnit(torch::jit::CompilationUnit* cu) {
|
|||
}
|
||||
}
|
||||
|
||||
MlirValue torch_mlir::importIValue(
|
||||
c10::IValue ivalue, MlirBlock block, MlirContext context,
|
||||
ClassAnnotator& annotator, const ImportOptions& importOptions) {
|
||||
MlirValue torch_mlir::importIValue(c10::IValue ivalue, MlirBlock block,
|
||||
MlirContext context,
|
||||
ClassAnnotator &annotator,
|
||||
const ImportOptions &importOptions) {
|
||||
// When debugging module importing, it can be useful to dump as so:
|
||||
// if (ivalue.isModule())
|
||||
// ivalue.toModule().dump(true, false, false);
|
|
@ -25,9 +25,9 @@ namespace torch_mlir {
|
|||
|
||||
/// Main entry-point for importing torch IValue's .
|
||||
/// Recursively imports `ivalue`, inserting operations at the end of `block`.
|
||||
MlirValue importIValue(
|
||||
c10::IValue ivalue, MlirBlock block, MlirContext context,
|
||||
ClassAnnotator& annotator, const ImportOptions& importOptions);
|
||||
MlirValue importIValue(c10::IValue ivalue, MlirBlock block, MlirContext context,
|
||||
ClassAnnotator &annotator,
|
||||
const ImportOptions &importOptions);
|
||||
|
||||
} // namespace torch_mlir
|
||||
|
|
@ -22,92 +22,92 @@
|
|||
|
||||
namespace torch_mlir {
|
||||
|
||||
inline MlirStringRef toMlirStringRef(const std::string& s) {
|
||||
inline MlirStringRef toMlirStringRef(const std::string &s) {
|
||||
return mlirStringRefCreate(s.data(), s.size());
|
||||
}
|
||||
|
||||
inline MlirStringRef toMlirStringRef(const char* s) {
|
||||
inline MlirStringRef toMlirStringRef(const char *s) {
|
||||
return mlirStringRefCreate(s, std::strlen(s));
|
||||
}
|
||||
|
||||
inline MlirNamedAttribute
|
||||
toMlirNamedAttribute(const char* s, MlirAttribute attr) {
|
||||
inline MlirNamedAttribute toMlirNamedAttribute(const char *s,
|
||||
MlirAttribute attr) {
|
||||
MlirContext context = mlirAttributeGetContext(attr);
|
||||
MlirIdentifier ident = mlirIdentifierGet(context, toMlirStringRef(s));
|
||||
return mlirNamedAttributeGet(ident, attr);
|
||||
}
|
||||
|
||||
inline void addToMlirOperationState(
|
||||
MlirOperationState& state, MlirNamedAttribute namedAttr) {
|
||||
inline void addToMlirOperationState(MlirOperationState &state,
|
||||
MlirNamedAttribute namedAttr) {
|
||||
mlirOperationStateAddAttributes(&state, 1, &namedAttr);
|
||||
}
|
||||
|
||||
inline void
|
||||
addToMlirOperationState(MlirOperationState& state, MlirRegion region) {
|
||||
inline void addToMlirOperationState(MlirOperationState &state,
|
||||
MlirRegion region) {
|
||||
mlirOperationStateAddOwnedRegions(&state, 1, ®ion);
|
||||
}
|
||||
|
||||
inline void
|
||||
addToMlirOperationState(MlirOperationState& state, MlirValue value) {
|
||||
inline void addToMlirOperationState(MlirOperationState &state,
|
||||
MlirValue value) {
|
||||
mlirOperationStateAddOperands(&state, 1, &value);
|
||||
}
|
||||
|
||||
inline void addToMlirOperationState(
|
||||
MlirOperationState& state, const std::vector<MlirValue>& values) {
|
||||
inline void addToMlirOperationState(MlirOperationState &state,
|
||||
const std::vector<MlirValue> &values) {
|
||||
mlirOperationStateAddOperands(&state, values.size(), values.data());
|
||||
}
|
||||
|
||||
inline void addToMlirOperationState(
|
||||
MlirOperationState& state, c10::ArrayRef<MlirValue> values) {
|
||||
inline void addToMlirOperationState(MlirOperationState &state,
|
||||
c10::ArrayRef<MlirValue> values) {
|
||||
mlirOperationStateAddOperands(&state, values.size(), values.data());
|
||||
}
|
||||
|
||||
inline void
|
||||
addToMlirOperationState(MlirOperationState& state, MlirType resultType) {
|
||||
inline void addToMlirOperationState(MlirOperationState &state,
|
||||
MlirType resultType) {
|
||||
mlirOperationStateAddResults(&state, 1, &resultType);
|
||||
}
|
||||
|
||||
inline void addToMlirOperationState(
|
||||
MlirOperationState& state, const std::vector<MlirType>& resultTypes) {
|
||||
inline void addToMlirOperationState(MlirOperationState &state,
|
||||
const std::vector<MlirType> &resultTypes) {
|
||||
mlirOperationStateAddResults(&state, resultTypes.size(), resultTypes.data());
|
||||
}
|
||||
|
||||
inline void addToMlirOperationState(
|
||||
MlirOperationState& state, c10::ArrayRef<MlirType> resultTypes) {
|
||||
inline void addToMlirOperationState(MlirOperationState &state,
|
||||
c10::ArrayRef<MlirType> resultTypes) {
|
||||
mlirOperationStateAddResults(&state, resultTypes.size(), resultTypes.data());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void addToMlirOperationState(MlirOperationState& state, c10::optional<T> o) {
|
||||
void addToMlirOperationState(MlirOperationState &state, c10::optional<T> o) {
|
||||
if (o.has_value()) {
|
||||
addToMlirOperationState(state, o.value());
|
||||
}
|
||||
}
|
||||
|
||||
inline void addToMlirOperationState(MlirOperationState& state) {}
|
||||
inline void addToMlirOperationState(MlirOperationState &state) {}
|
||||
|
||||
template <typename T, typename U, typename... Ts>
|
||||
void addToMlirOperationState(
|
||||
MlirOperationState& state, T&& t, U&& u, Ts&&... ts) {
|
||||
void addToMlirOperationState(MlirOperationState &state, T &&t, U &&u,
|
||||
Ts &&...ts) {
|
||||
addToMlirOperationState(state, std::forward<T>(t));
|
||||
addToMlirOperationState(state, std::forward<U>(u), std::forward<Ts>(ts)...);
|
||||
}
|
||||
|
||||
template <typename... Ts>
|
||||
MlirOperation
|
||||
createMlirOperation(std::string name, MlirLocation loc, Ts&&... ts) {
|
||||
MlirOperation createMlirOperation(std::string name, MlirLocation loc,
|
||||
Ts &&...ts) {
|
||||
MlirOperationState state = mlirOperationStateGet(toMlirStringRef(name), loc);
|
||||
addToMlirOperationState(state, std::forward<Ts>(ts)...);
|
||||
return mlirOperationCreate(&state);
|
||||
}
|
||||
|
||||
template <typename... Ts>
|
||||
MlirOperation createMlirOperationAtEnd(
|
||||
MlirBlock block, std::string name, MlirLocation loc, Ts&&... ts) {
|
||||
MlirOperation createMlirOperationAtEnd(MlirBlock block, std::string name,
|
||||
MlirLocation loc, Ts &&...ts) {
|
||||
MlirOperation operation =
|
||||
createMlirOperation(name, loc, std::forward<Ts>(ts)...);
|
||||
mlirBlockInsertOwnedOperationBefore(
|
||||
block, mlirBlockGetTerminator(block), operation);
|
||||
mlirBlockInsertOwnedOperationBefore(block, mlirBlockGetTerminator(block),
|
||||
operation);
|
||||
return operation;
|
||||
}
|
||||
|
|
@ -33,42 +33,40 @@ class NodeImporter {
|
|||
public:
|
||||
NodeImporter(MlirContext context) : context(context) {}
|
||||
|
||||
void importNode(
|
||||
Node* node, MlirBlock appendToBlock,
|
||||
const ImportOptions& importOptions = {});
|
||||
void importNode(Node *node, MlirBlock appendToBlock,
|
||||
const ImportOptions &importOptions = {});
|
||||
MlirBlock importBlock(
|
||||
Block* jitBlock, CreateTerminatorFn createTerminator,
|
||||
Block *jitBlock, CreateTerminatorFn createTerminator,
|
||||
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes = c10::nullopt,
|
||||
const ImportOptions& importOptions = {});
|
||||
const ImportOptions &importOptions = {});
|
||||
|
||||
private:
|
||||
MlirBlock createBlockFor(
|
||||
Block* jitBlock, c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
|
||||
const ImportOptions& importOptions = {});
|
||||
void mapValue(Value* jitValue, MlirValue value);
|
||||
void mapResults(Node* node, MlirOperation operation);
|
||||
MlirValue lookupMappedValue(Value* jitValue);
|
||||
std::vector<MlirValue> lookupMappedValues(c10::ArrayRef<Value*> values);
|
||||
MlirBlock createBlockFor(Block *jitBlock,
|
||||
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
|
||||
const ImportOptions &importOptions = {});
|
||||
void mapValue(Value *jitValue, MlirValue value);
|
||||
void mapResults(Node *node, MlirOperation operation);
|
||||
MlirValue lookupMappedValue(Value *jitValue);
|
||||
std::vector<MlirValue> lookupMappedValues(c10::ArrayRef<Value *> values);
|
||||
|
||||
MlirContext context;
|
||||
std::unordered_map<Value*, MlirValue> valueMap;
|
||||
std::unordered_map<Value *, MlirValue> valueMap;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
using InputsTransformFn =
|
||||
std::function<std::vector<MlirValue>(std::vector<MlirValue>&)>;
|
||||
std::function<std::vector<MlirValue>(std::vector<MlirValue> &)>;
|
||||
|
||||
// The inputs of `DictConstruct` in TorchScript IR are in the order
|
||||
// like k0, v0, k1, v1. Rearrange them to put the key operands together and
|
||||
// then the value operands like k0, k1,v0, v1. This is the expected format by
|
||||
// the corresponding MLIR op.
|
||||
static std::vector<MlirValue>
|
||||
rearrangeDictConstructInputs(std::vector<MlirValue>& inputs) {
|
||||
rearrangeDictConstructInputs(std::vector<MlirValue> &inputs) {
|
||||
if (inputs.empty())
|
||||
return inputs;
|
||||
assert(
|
||||
inputs.size() % 2 == 0 &&
|
||||
"DictConstruct must have even number of operands");
|
||||
assert(inputs.size() % 2 == 0 &&
|
||||
"DictConstruct must have even number of operands");
|
||||
|
||||
std::vector<MlirValue> rearranged;
|
||||
std::vector<MlirValue> values;
|
||||
|
@ -80,12 +78,12 @@ rearrangeDictConstructInputs(std::vector<MlirValue>& inputs) {
|
|||
return rearranged;
|
||||
}
|
||||
|
||||
void NodeImporter::importNode(
|
||||
Node* node, MlirBlock appendToBlock, const ImportOptions& importOptions) {
|
||||
void NodeImporter::importNode(Node *node, MlirBlock appendToBlock,
|
||||
const ImportOptions &importOptions) {
|
||||
MlirLocation loc = getMlirLocationFromNode(context, node);
|
||||
auto kind = node->kind();
|
||||
|
||||
auto createAndMapTrivialNode = [&](Node* node, const std::string& opName,
|
||||
auto createAndMapTrivialNode = [&](Node *node, const std::string &opName,
|
||||
InputsTransformFn t) {
|
||||
std::vector<MlirValue> mappedInputs = lookupMappedValues(node->inputs());
|
||||
MlirOperation operation = createMlirOperationAtEnd(
|
||||
|
@ -96,7 +94,7 @@ void NodeImporter::importNode(
|
|||
};
|
||||
|
||||
auto createAndMapNodeWithAttribute =
|
||||
[&](Node* node, const std::string& opName, const std::string& attrName,
|
||||
[&](Node *node, const std::string &opName, const std::string &attrName,
|
||||
MlirAttribute attr) {
|
||||
MlirOperation operation = createMlirOperationAtEnd(
|
||||
appendToBlock, opName, loc,
|
||||
|
@ -133,27 +131,27 @@ void NodeImporter::importNode(
|
|||
// ListConstruct and DictConstruct too.
|
||||
auto containedTypes = c10::fmap(
|
||||
node->output()->type()->cast<c10::TupleType>()->containedTypes(),
|
||||
[&](const c10::TypePtr& t) {
|
||||
[&](const c10::TypePtr &t) {
|
||||
MlirType type = getMlirTypeFromTorchType(loc, t, importOptions);
|
||||
if (mlirTypeIsNull(type)) {
|
||||
throw mlir_diagnostic_emitted();
|
||||
}
|
||||
return type;
|
||||
});
|
||||
createAndMapTrivialNode(
|
||||
node, "torch.prim." + std::string(kind.toUnqualString()),
|
||||
[&](std::vector<MlirValue>& inputs) {
|
||||
assert(containedTypes.size() == inputs.size());
|
||||
return adjustStaticInformationForValues(
|
||||
appendToBlock, loc, inputs, containedTypes,
|
||||
/*userAllowsRefinement=*/true);
|
||||
});
|
||||
createAndMapTrivialNode(node,
|
||||
"torch.prim." + std::string(kind.toUnqualString()),
|
||||
[&](std::vector<MlirValue> &inputs) {
|
||||
assert(containedTypes.size() == inputs.size());
|
||||
return adjustStaticInformationForValues(
|
||||
appendToBlock, loc, inputs, containedTypes,
|
||||
/*userAllowsRefinement=*/true);
|
||||
});
|
||||
return;
|
||||
}
|
||||
case c10::prim::DictConstruct: {
|
||||
createAndMapTrivialNode(
|
||||
node, "torch.prim." + std::string(kind.toUnqualString()),
|
||||
rearrangeDictConstructInputs);
|
||||
createAndMapTrivialNode(node,
|
||||
"torch.prim." + std::string(kind.toUnqualString()),
|
||||
rearrangeDictConstructInputs);
|
||||
return;
|
||||
}
|
||||
case c10::prim::Load:
|
||||
|
@ -171,34 +169,32 @@ void NodeImporter::importNode(
|
|||
auto output = node->output();
|
||||
MlirOperation op;
|
||||
if (output->type()->cast<c10::NoneType>()) {
|
||||
op = createMlirOperation(
|
||||
"torch.constant.none", loc, torchMlirTorchNoneTypeGet(context));
|
||||
op = createMlirOperation("torch.constant.none", loc,
|
||||
torchMlirTorchNoneTypeGet(context));
|
||||
} else if (output->type()->cast<c10::BoolType>()) {
|
||||
op = createMlirOperation(
|
||||
"torch.constant.bool", loc, torchMlirTorchBoolTypeGet(context),
|
||||
toMlirNamedAttribute(
|
||||
"value",
|
||||
mlirBoolAttrGet(
|
||||
context, static_cast<bool>(node->i(c10::attr::value)))));
|
||||
"value", mlirBoolAttrGet(context, static_cast<bool>(node->i(
|
||||
c10::attr::value)))));
|
||||
} else if (output->type()->cast<c10::IntType>()) {
|
||||
op = createMlirOperation(
|
||||
"torch.constant.int", loc,
|
||||
getMlirTypeFromTorchType(loc, output->type(), importOptions),
|
||||
toMlirNamedAttribute(
|
||||
"value", importAttribute(loc, node, c10::attr::value)));
|
||||
toMlirNamedAttribute("value",
|
||||
importAttribute(loc, node, c10::attr::value)));
|
||||
} else if (output->type()->cast<c10::FloatType>()) {
|
||||
op = createMlirOperation(
|
||||
"torch.constant.float", loc,
|
||||
getMlirTypeFromTorchType(loc, output->type(), importOptions),
|
||||
toMlirNamedAttribute(
|
||||
"value", importAttribute(loc, node, c10::attr::value)));
|
||||
toMlirNamedAttribute("value",
|
||||
importAttribute(loc, node, c10::attr::value)));
|
||||
} else if (output->type()->cast<c10::StringType>()) {
|
||||
op = createMlirOperation(
|
||||
"torch.constant.str", loc, torchMlirTorchStringTypeGet(context),
|
||||
toMlirNamedAttribute(
|
||||
"value",
|
||||
mlirStringAttrGet(
|
||||
context, toMlirStringRef(node->s(c10::attr::value)))));
|
||||
"value", mlirStringAttrGet(context, toMlirStringRef(node->s(
|
||||
c10::attr::value)))));
|
||||
} else if (output->type()->cast<c10::TensorType>()) {
|
||||
MlirAttribute attr = importAttribute(loc, node, c10::attr::value);
|
||||
if (importOptions.assumeTensorsHaveValueSemantics) {
|
||||
|
@ -217,26 +213,24 @@ void NodeImporter::importNode(
|
|||
"torch.constant.device", loc,
|
||||
getMlirTypeFromTorchType(loc, output->type(), importOptions),
|
||||
toMlirNamedAttribute(
|
||||
"value",
|
||||
mlirStringAttrGet(
|
||||
context, toMlirStringRef(node->s(c10::attr::value)))));
|
||||
"value", mlirStringAttrGet(context, toMlirStringRef(node->s(
|
||||
c10::attr::value)))));
|
||||
} else if (auto functionType = output->type()->cast<c10::FunctionType>()) {
|
||||
torch::jit::Function* function = functionType->function();
|
||||
const std::string& symName = function->qualname().qualifiedName();
|
||||
torch::jit::Function *function = functionType->function();
|
||||
const std::string &symName = function->qualname().qualifiedName();
|
||||
op = createMlirOperation(
|
||||
"func.constant", loc,
|
||||
getFunctionTypeFromSchema(
|
||||
context, function->getSchema(), importOptions),
|
||||
getFunctionTypeFromSchema(context, function->getSchema(),
|
||||
importOptions),
|
||||
toMlirNamedAttribute(
|
||||
"value",
|
||||
mlirFlatSymbolRefAttrGet(context, toMlirStringRef(symName))));
|
||||
} else if (
|
||||
output->type()->cast<c10::ListType>() ||
|
||||
output->type()->cast<c10::TupleType>()) {
|
||||
} else if (output->type()->cast<c10::ListType>() ||
|
||||
output->type()->cast<c10::TupleType>()) {
|
||||
ClassAnnotator dummyAnnotator;
|
||||
MlirValue listOrTupleValue = importIValue(
|
||||
node->ival(c10::attr::value), appendToBlock, context, dummyAnnotator,
|
||||
importOptions);
|
||||
MlirValue listOrTupleValue =
|
||||
importIValue(node->ival(c10::attr::value), appendToBlock, context,
|
||||
dummyAnnotator, importOptions);
|
||||
mapResults(node, mlirOpResultGetOwner(listOrTupleValue));
|
||||
return; // Early return, since `importIValue` already added op to block.
|
||||
} else {
|
||||
|
@ -264,20 +258,19 @@ void NodeImporter::importNode(
|
|||
mapResults(node, operation);
|
||||
std::vector<MlirType> terminatorOperandTypes = {
|
||||
torchMlirTorchBoolTypeGet(context)};
|
||||
terminatorOperandTypes.insert(
|
||||
terminatorOperandTypes.end(), resultTypes.begin(), resultTypes.end());
|
||||
terminatorOperandTypes.insert(terminatorOperandTypes.end(),
|
||||
resultTypes.begin(), resultTypes.end());
|
||||
auto createTerminator = [&](c10::ArrayRef<MlirValue> yieldedValues,
|
||||
MlirBlock appendToBlock) {
|
||||
createMlirOperationAtEnd(
|
||||
appendToBlock, "torch.prim.Loop.condition", loc,
|
||||
adjustStaticInformationForValues(
|
||||
appendToBlock, loc, yieldedValues, terminatorOperandTypes,
|
||||
/*userAllowsRefinement=*/false));
|
||||
adjustStaticInformationForValues(appendToBlock, loc, yieldedValues,
|
||||
terminatorOperandTypes,
|
||||
/*userAllowsRefinement=*/false));
|
||||
};
|
||||
mlirRegionAppendOwnedBlock(
|
||||
mlirOperationGetRegion(operation, 0),
|
||||
importBlock(
|
||||
node->blocks()[0], createTerminator, c10::nullopt, importOptions));
|
||||
mlirRegionAppendOwnedBlock(mlirOperationGetRegion(operation, 0),
|
||||
importBlock(node->blocks()[0], createTerminator,
|
||||
c10::nullopt, importOptions));
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -292,25 +285,23 @@ void NodeImporter::importNode(
|
|||
MlirBlock appendToBlock) {
|
||||
createMlirOperationAtEnd(
|
||||
appendToBlock, "torch.prim.If.yield", loc,
|
||||
adjustStaticInformationForValues(
|
||||
appendToBlock, loc, yieldedValues, resultTypes,
|
||||
/*userAllowsRefinement=*/false));
|
||||
adjustStaticInformationForValues(appendToBlock, loc, yieldedValues,
|
||||
resultTypes,
|
||||
/*userAllowsRefinement=*/false));
|
||||
};
|
||||
mlirRegionAppendOwnedBlock(
|
||||
mlirOperationGetRegion(operation, 0),
|
||||
importBlock(
|
||||
node->blocks()[0], createTerminator, c10::nullopt, importOptions));
|
||||
mlirRegionAppendOwnedBlock(
|
||||
mlirOperationGetRegion(operation, 1),
|
||||
importBlock(
|
||||
node->blocks()[1], createTerminator, c10::nullopt, importOptions));
|
||||
mlirRegionAppendOwnedBlock(mlirOperationGetRegion(operation, 0),
|
||||
importBlock(node->blocks()[0], createTerminator,
|
||||
c10::nullopt, importOptions));
|
||||
mlirRegionAppendOwnedBlock(mlirOperationGetRegion(operation, 1),
|
||||
importBlock(node->blocks()[1], createTerminator,
|
||||
c10::nullopt, importOptions));
|
||||
return;
|
||||
}
|
||||
|
||||
if (kind == c10::prim::CallMethod) {
|
||||
auto classType = node->input(0)->type()->cast<c10::ClassType>();
|
||||
auto methodName = node->s(c10::attr::name);
|
||||
torch::jit::Function* function = classType->findMethod(methodName);
|
||||
torch::jit::Function *function = classType->findMethod(methodName);
|
||||
MlirType calleeType = getFunctionTypeFromSchema(
|
||||
context, function->getSchema(), importOptions);
|
||||
std::vector<MlirType> expectedTypes;
|
||||
|
@ -323,17 +314,17 @@ void NodeImporter::importNode(
|
|||
adjustStaticInformationForValues(
|
||||
appendToBlock, loc, lookupMappedValues(node->inputs()),
|
||||
expectedTypes, /*userAllowsRefinement=*/false),
|
||||
toMlirNamedAttribute(
|
||||
"name", importAttribute(loc, node, c10::attr::name)));
|
||||
toMlirNamedAttribute("name",
|
||||
importAttribute(loc, node, c10::attr::name)));
|
||||
mapResults(node, operation);
|
||||
return;
|
||||
}
|
||||
|
||||
if (kind == c10::prim::CallFunction) {
|
||||
auto functionType = node->input(0)->type()->cast<c10::FunctionType>();
|
||||
torch::jit::Block* calleeEntryBlock =
|
||||
torch::jit::Block *calleeEntryBlock =
|
||||
torch::jit::toGraphFunction(*functionType->function()).graph()->block();
|
||||
auto expectedTypes = c10::fmap(calleeEntryBlock->inputs(), [&](Value* v) {
|
||||
auto expectedTypes = c10::fmap(calleeEntryBlock->inputs(), [&](Value *v) {
|
||||
return getMlirTypeFromTorchType(loc, v->type(), importOptions);
|
||||
});
|
||||
std::string functionName = node->input(0)->node()->s(c10::attr::name);
|
||||
|
@ -348,9 +339,9 @@ void NodeImporter::importNode(
|
|||
// promoted result dtype for a PyTorch computation. Here we turn the call to
|
||||
// this function to the torch dialect equivalent op `torch.promote_dtypes`.
|
||||
if (functionName == "__torch_mlir_internal_promote_dtypes") {
|
||||
operation = createMlirOperationAtEnd(
|
||||
appendToBlock, "torch.promote_dtypes", loc, resultTypes,
|
||||
adjustedFuncArgs);
|
||||
operation =
|
||||
createMlirOperationAtEnd(appendToBlock, "torch.promote_dtypes", loc,
|
||||
resultTypes, adjustedFuncArgs);
|
||||
} else {
|
||||
operation = createMlirOperationAtEnd(
|
||||
appendToBlock, "func.call_indirect", loc, resultTypes,
|
||||
|
@ -369,23 +360,23 @@ void NodeImporter::importNode(
|
|||
}
|
||||
}
|
||||
|
||||
MlirBlock NodeImporter::importBlock(
|
||||
Block* jitBlock, CreateTerminatorFn createTerminator,
|
||||
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
|
||||
const ImportOptions& importOptions) {
|
||||
MlirBlock
|
||||
NodeImporter::importBlock(Block *jitBlock, CreateTerminatorFn createTerminator,
|
||||
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
|
||||
const ImportOptions &importOptions) {
|
||||
MlirBlock block = createBlockFor(jitBlock, blockArgTypes, importOptions);
|
||||
for (Node* node : jitBlock->nodes()) {
|
||||
for (Node *node : jitBlock->nodes()) {
|
||||
importNode(node, block, importOptions);
|
||||
}
|
||||
Node* returnNode = jitBlock->return_node();
|
||||
Node *returnNode = jitBlock->return_node();
|
||||
createTerminator(lookupMappedValues(returnNode->inputs()), block);
|
||||
return block;
|
||||
}
|
||||
|
||||
MlirBlock NodeImporter::createBlockFor(
|
||||
Block* jitBlock, c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
|
||||
const ImportOptions& importOptions) {
|
||||
Node* paramNode = jitBlock->param_node();
|
||||
Block *jitBlock, c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
|
||||
const ImportOptions &importOptions) {
|
||||
Node *paramNode = jitBlock->param_node();
|
||||
MlirLocation loc = getMlirLocationFromNode(context, paramNode);
|
||||
std::vector<MlirType> paramNodeTypes =
|
||||
getMlirTypesFromValues(loc, paramNode->outputs(), importOptions);
|
||||
|
@ -394,11 +385,11 @@ MlirBlock NodeImporter::createBlockFor(
|
|||
else
|
||||
assert(blockArgTypes->size() == paramNodeTypes.size());
|
||||
std::vector<MlirLocation> blockArgLocs(paramNodeTypes.size(), loc);
|
||||
MlirBlock block = mlirBlockCreate(
|
||||
blockArgTypes.value().size(), blockArgTypes.value().data(),
|
||||
blockArgLocs.data());
|
||||
MlirBlock block =
|
||||
mlirBlockCreate(blockArgTypes.value().size(),
|
||||
blockArgTypes.value().data(), blockArgLocs.data());
|
||||
for (int i = 0, e = mlirBlockGetNumArguments(block); i < e; i++) {
|
||||
Value* jitValue = paramNode->outputs()[i];
|
||||
Value *jitValue = paramNode->outputs()[i];
|
||||
MlirValue value = mlirBlockGetArgument(block, i);
|
||||
MlirValue adjusted = adjustStaticInformationForValues(
|
||||
block, loc, {value}, {paramNodeTypes[i]},
|
||||
|
@ -408,40 +399,40 @@ MlirBlock NodeImporter::createBlockFor(
|
|||
return block;
|
||||
}
|
||||
|
||||
void NodeImporter::mapValue(Value* jitValue, MlirValue value) {
|
||||
void NodeImporter::mapValue(Value *jitValue, MlirValue value) {
|
||||
auto it = valueMap.find(jitValue);
|
||||
(void)it;
|
||||
assert(it == valueMap.end() && "jitValue has already been mapped");
|
||||
valueMap[jitValue] = value;
|
||||
}
|
||||
void NodeImporter::mapResults(Node* node, MlirOperation operation) {
|
||||
assert(
|
||||
node->outputs().size() == (size_t)mlirOperationGetNumResults(operation));
|
||||
void NodeImporter::mapResults(Node *node, MlirOperation operation) {
|
||||
assert(node->outputs().size() ==
|
||||
(size_t)mlirOperationGetNumResults(operation));
|
||||
for (int i = 0, e = node->outputs().size(); i < e; i++) {
|
||||
mapValue(node->outputs()[i], mlirOperationGetResult(operation, i));
|
||||
}
|
||||
}
|
||||
MlirValue NodeImporter::lookupMappedValue(Value* jitValue) {
|
||||
MlirValue NodeImporter::lookupMappedValue(Value *jitValue) {
|
||||
auto it = valueMap.find(jitValue);
|
||||
assert(
|
||||
it != valueMap.end() &&
|
||||
"trying to get mapping for jitValue that is not mapped yet!");
|
||||
assert(it != valueMap.end() &&
|
||||
"trying to get mapping for jitValue that is not mapped yet!");
|
||||
return it->second;
|
||||
}
|
||||
std::vector<MlirValue>
|
||||
NodeImporter::lookupMappedValues(c10::ArrayRef<Value*> values) {
|
||||
NodeImporter::lookupMappedValues(c10::ArrayRef<Value *> values) {
|
||||
std::vector<MlirValue> ret;
|
||||
for (Value* value : values) {
|
||||
for (Value *value : values) {
|
||||
ret.push_back(lookupMappedValue(value));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
MlirBlock torch_mlir::importBlock(
|
||||
MlirContext context, Block* jitBlock, CreateTerminatorFn createTerminator,
|
||||
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
|
||||
const ImportOptions& importOptions) {
|
||||
MlirBlock
|
||||
torch_mlir::importBlock(MlirContext context, Block *jitBlock,
|
||||
CreateTerminatorFn createTerminator,
|
||||
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes,
|
||||
const ImportOptions &importOptions) {
|
||||
NodeImporter importer(context);
|
||||
return importer.importBlock(
|
||||
jitBlock, createTerminator, blockArgTypes, importOptions);
|
||||
return importer.importBlock(jitBlock, createTerminator, blockArgTypes,
|
||||
importOptions);
|
||||
}
|
|
@ -36,11 +36,11 @@ using CreateTerminatorFn =
|
|||
/// are required to be for correctness. The code will internally attempt to
|
||||
/// adjust the types to the block argument types.
|
||||
/// TODO: Formalize what type conversions are allowed here.
|
||||
MlirBlock importBlock(
|
||||
MlirContext context, torch::jit::Block* jitBlock,
|
||||
CreateTerminatorFn createTerminator,
|
||||
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes = c10::nullopt,
|
||||
const ImportOptions& importOptions = {});
|
||||
MlirBlock
|
||||
importBlock(MlirContext context, torch::jit::Block *jitBlock,
|
||||
CreateTerminatorFn createTerminator,
|
||||
c10::optional<c10::ArrayRef<MlirType>> blockArgTypes = c10::nullopt,
|
||||
const ImportOptions &importOptions = {});
|
||||
|
||||
} // namespace torch_mlir
|
||||
|
|
@ -26,8 +26,8 @@
|
|||
|
||||
using namespace torch_mlir;
|
||||
|
||||
static MlirType getMlirTypeForTorchScalarTypeRaw(
|
||||
MlirContext context, c10::ScalarType scalarType) {
|
||||
static MlirType getMlirTypeForTorchScalarTypeRaw(MlirContext context,
|
||||
c10::ScalarType scalarType) {
|
||||
using c10::ScalarType;
|
||||
switch (scalarType) {
|
||||
case ScalarType::Byte:
|
||||
|
@ -69,8 +69,8 @@ static MlirType getMlirTypeForTorchScalarTypeRaw(
|
|||
}
|
||||
}
|
||||
|
||||
MlirType torch_mlir::getMlirTypeForTorchScalarType(
|
||||
MlirLocation loc, c10::ScalarType scalarType) {
|
||||
MlirType torch_mlir::getMlirTypeForTorchScalarType(MlirLocation loc,
|
||||
c10::ScalarType scalarType) {
|
||||
auto type =
|
||||
getMlirTypeForTorchScalarTypeRaw(mlirLocationGetContext(loc), scalarType);
|
||||
if (mlirTypeIsNull(type)) {
|
||||
|
@ -98,8 +98,8 @@ MlirType torch_mlir::getMlirTypeForTorchScalarType(
|
|||
// There is no generic way to import custom classes (or their types), so we
|
||||
// have to name match them here (and the relevant code in the ivalue
|
||||
// importer) and create special IR constructs for them.
|
||||
static MlirType mapCustomClassType(
|
||||
MlirContext context, MlirLocation loc, const c10::ClassTypePtr& classType) {
|
||||
static MlirType mapCustomClassType(MlirContext context, MlirLocation loc,
|
||||
const c10::ClassTypePtr &classType) {
|
||||
// If the type is unnamed, it cannot be a custom class.
|
||||
if (!classType->name().has_value()) {
|
||||
return {nullptr};
|
||||
|
@ -126,9 +126,10 @@ static MlirType mapCustomClassType(
|
|||
throw mlir_diagnostic_emitted();
|
||||
}
|
||||
|
||||
MlirType torch_mlir::getMlirTypeFromTorchType(
|
||||
MlirLocation loc, const c10::TypePtr& torchType,
|
||||
const ImportOptions& importOptions) {
|
||||
MlirType
|
||||
torch_mlir::getMlirTypeFromTorchType(MlirLocation loc,
|
||||
const c10::TypePtr &torchType,
|
||||
const ImportOptions &importOptions) {
|
||||
MlirContext context = mlirLocationGetContext(loc);
|
||||
using c10::TypeKind;
|
||||
auto kind = torchType->kind();
|
||||
|
@ -140,11 +141,10 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
|
|||
: torchMlirTorchNonValueTensorTypeGet;
|
||||
|
||||
if (importOptions.ignoreExistingTensorShapesAndDtypes) {
|
||||
return getMlirTensorType(
|
||||
context,
|
||||
/*numSizes=*/-1,
|
||||
/*optionalSizes=*/nullptr,
|
||||
/*optionalDtype=*/{nullptr});
|
||||
return getMlirTensorType(context,
|
||||
/*numSizes=*/-1,
|
||||
/*optionalSizes=*/nullptr,
|
||||
/*optionalDtype=*/{nullptr});
|
||||
}
|
||||
|
||||
// Element type.
|
||||
|
@ -156,18 +156,17 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
|
|||
return {nullptr};
|
||||
}
|
||||
// Sizes.
|
||||
auto& sizes = tensorType->symbolic_sizes();
|
||||
auto &sizes = tensorType->symbolic_sizes();
|
||||
if (!sizes.rank()) {
|
||||
// Unranked.
|
||||
return getMlirTensorType(
|
||||
context,
|
||||
/*numSizes=*/-1,
|
||||
/*optionalSizes=*/nullptr,
|
||||
/*optionalDtype=*/
|
||||
elementType);
|
||||
return getMlirTensorType(context,
|
||||
/*numSizes=*/-1,
|
||||
/*optionalSizes=*/nullptr,
|
||||
/*optionalDtype=*/
|
||||
elementType);
|
||||
}
|
||||
// Ranked with possibly dynamic dims.
|
||||
auto& symbolicShape = tensorType->symbolic_sizes();
|
||||
auto &symbolicShape = tensorType->symbolic_sizes();
|
||||
std::vector<int64_t> dims;
|
||||
dims.resize(*sizes.rank());
|
||||
for (size_t i = 0; i < dims.size(); ++i) {
|
||||
|
@ -180,12 +179,11 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
|
|||
// the C API constructor, when we want the "we know we have 0 sizes"
|
||||
// case. So use a dummy data pointer.
|
||||
int64_t dummy;
|
||||
int64_t* dimsData = dims.size() == 0 ? &dummy : dims.data();
|
||||
return getMlirTensorType(
|
||||
context, dims.size(),
|
||||
/*optionalSizes=*/dimsData,
|
||||
/*optionalDtype=*/
|
||||
elementType);
|
||||
int64_t *dimsData = dims.size() == 0 ? &dummy : dims.data();
|
||||
return getMlirTensorType(context, dims.size(),
|
||||
/*optionalSizes=*/dimsData,
|
||||
/*optionalDtype=*/
|
||||
elementType);
|
||||
}
|
||||
case TypeKind::IntType: {
|
||||
return torchMlirTorchIntTypeGet(context);
|
||||
|
@ -209,22 +207,22 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
|
|||
}
|
||||
case TypeKind::TupleType: {
|
||||
std::vector<MlirType> containedTypes;
|
||||
for (const c10::TypePtr& type :
|
||||
for (const c10::TypePtr &type :
|
||||
torchType->cast<c10::TupleType>()->containedTypes()) {
|
||||
containedTypes.push_back(
|
||||
getMlirTypeFromTorchType(loc, type, importOptions));
|
||||
}
|
||||
return torchMlirTorchTupleTypeGet(
|
||||
context, containedTypes.size(), containedTypes.data());
|
||||
return torchMlirTorchTupleTypeGet(context, containedTypes.size(),
|
||||
containedTypes.data());
|
||||
}
|
||||
case TypeKind::UnionType: {
|
||||
std::vector<MlirType> containedTypes;
|
||||
for (const c10::TypePtr& type :
|
||||
for (const c10::TypePtr &type :
|
||||
torchType->cast<c10::UnionType>()->containedTypes()) {
|
||||
containedTypes.push_back(getMlirTypeFromTorchType(loc, type));
|
||||
}
|
||||
return torchMlirTorchUnionTypeGet(
|
||||
context, containedTypes.size(), containedTypes.data());
|
||||
return torchMlirTorchUnionTypeGet(context, containedTypes.size(),
|
||||
containedTypes.data());
|
||||
}
|
||||
case TypeKind::ListType: {
|
||||
return torchMlirTorchListTypeGet(getMlirTypeFromTorchType(
|
||||
|
@ -244,7 +242,7 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
|
|||
return torchMlirTorchAnyTypeGet(context);
|
||||
}
|
||||
case TypeKind::ClassType: {
|
||||
const c10::ClassTypePtr& classType = torchType->cast<c10::ClassType>();
|
||||
const c10::ClassTypePtr &classType = torchType->cast<c10::ClassType>();
|
||||
MlirType customClassType = mapCustomClassType(context, loc, classType);
|
||||
if (!mlirTypeIsNull(customClassType)) {
|
||||
return customClassType;
|
||||
|
@ -268,11 +266,12 @@ MlirType torch_mlir::getMlirTypeFromTorchType(
|
|||
}
|
||||
}
|
||||
|
||||
MlirType torch_mlir::getFunctionTypeFromSchema(
|
||||
MlirContext context, const c10::FunctionSchema& schema,
|
||||
const ImportOptions& importOptions) {
|
||||
MlirType
|
||||
torch_mlir::getFunctionTypeFromSchema(MlirContext context,
|
||||
const c10::FunctionSchema &schema,
|
||||
const ImportOptions &importOptions) {
|
||||
MlirLocation loc = mlirLocationUnknownGet(context);
|
||||
auto mapType = [&](const c10::TypePtr& torchType) {
|
||||
auto mapType = [&](const c10::TypePtr &torchType) {
|
||||
MlirType type = getMlirTypeFromTorchType(loc, torchType, importOptions);
|
||||
if (mlirTypeIsNull(type)) {
|
||||
std::stringstream msg;
|
||||
|
@ -284,20 +283,17 @@ MlirType torch_mlir::getFunctionTypeFromSchema(
|
|||
};
|
||||
|
||||
std::vector<MlirType> inputTypes =
|
||||
c10::fmap(schema.arguments(), [&](const c10::Argument& arg) {
|
||||
return mapType(arg.type());
|
||||
});
|
||||
c10::fmap(schema.arguments(),
|
||||
[&](const c10::Argument &arg) { return mapType(arg.type()); });
|
||||
std::vector<MlirType> outputTypes =
|
||||
c10::fmap(schema.returns(), [&](const c10::Argument& arg) {
|
||||
return mapType(arg.type());
|
||||
});
|
||||
return mlirFunctionTypeGet(
|
||||
context, inputTypes.size(), inputTypes.data(), outputTypes.size(),
|
||||
outputTypes.data());
|
||||
c10::fmap(schema.returns(),
|
||||
[&](const c10::Argument &arg) { return mapType(arg.type()); });
|
||||
return mlirFunctionTypeGet(context, inputTypes.size(), inputTypes.data(),
|
||||
outputTypes.size(), outputTypes.data());
|
||||
}
|
||||
|
||||
MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(
|
||||
at::Tensor tensor, MlirLocation loc) {
|
||||
MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(at::Tensor tensor,
|
||||
MlirLocation loc) {
|
||||
using at::ScalarType;
|
||||
|
||||
auto throwUnsupportedTensorError = [&]() {
|
||||
|
@ -312,8 +308,8 @@ MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(
|
|||
|
||||
// The flat number of bytes throws an exception for tensors that are not
|
||||
// dense and accessible as such.
|
||||
at::checkLayout(
|
||||
at::CheckedFrom("accessing contiguous"), tensor, c10::Layout::Strided);
|
||||
at::checkLayout(at::CheckedFrom("accessing contiguous"), tensor,
|
||||
c10::Layout::Strided);
|
||||
|
||||
// Construct the ShapedType.
|
||||
|
||||
|
@ -338,47 +334,47 @@ MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(
|
|||
switch (tensor.scalar_type()) {
|
||||
case ScalarType::Int:
|
||||
return mlirDenseElementsAttrInt32Get(
|
||||
shapedType, numElements, static_cast<const int32_t*>(tensorData));
|
||||
shapedType, numElements, static_cast<const int32_t *>(tensorData));
|
||||
break;
|
||||
case ScalarType::Long:
|
||||
return mlirDenseElementsAttrInt64Get(
|
||||
shapedType, numElements, static_cast<const int64_t*>(tensorData));
|
||||
shapedType, numElements, static_cast<const int64_t *>(tensorData));
|
||||
break;
|
||||
case ScalarType::Float:
|
||||
return mlirDenseElementsAttrFloatGet(
|
||||
shapedType, numElements, static_cast<const float*>(tensorData));
|
||||
shapedType, numElements, static_cast<const float *>(tensorData));
|
||||
break;
|
||||
case ScalarType::Double:
|
||||
return mlirDenseElementsAttrDoubleGet(
|
||||
shapedType, numElements, static_cast<const double*>(tensorData));
|
||||
shapedType, numElements, static_cast<const double *>(tensorData));
|
||||
break;
|
||||
case ScalarType::Bool: {
|
||||
// TODO: The signature of `mlirDenseElementsAttrBoolGet` should be changed
|
||||
// upstream to take in a `const bool *` rather than a `const int *` to avoid
|
||||
// the unnecessary copying into an array four times as large.
|
||||
const int8_t* elements = static_cast<const int8_t*>(tensorData);
|
||||
const int8_t *elements = static_cast<const int8_t *>(tensorData);
|
||||
std::vector<int> tensorDataVector(elements, elements + numElements);
|
||||
return mlirDenseElementsAttrBoolGet(
|
||||
shapedType, numElements, tensorDataVector.data());
|
||||
return mlirDenseElementsAttrBoolGet(shapedType, numElements,
|
||||
tensorDataVector.data());
|
||||
} break;
|
||||
case ScalarType::QInt8:
|
||||
return mlirDenseElementsAttrInt8Get(
|
||||
shapedType, numElements, static_cast<const int8_t*>(tensorData));
|
||||
shapedType, numElements, static_cast<const int8_t *>(tensorData));
|
||||
case ScalarType::QUInt8:
|
||||
return mlirDenseElementsAttrUInt8Get(
|
||||
shapedType, numElements, static_cast<const uint8_t*>(tensorData));
|
||||
shapedType, numElements, static_cast<const uint8_t *>(tensorData));
|
||||
case ScalarType::BFloat16:
|
||||
return mlirDenseElementsAttrBFloat16Get(
|
||||
shapedType, numElements, static_cast<const uint16_t*>(tensorData));
|
||||
shapedType, numElements, static_cast<const uint16_t *>(tensorData));
|
||||
case ScalarType::Half:
|
||||
return mlirDenseElementsAttrFloat16Get(
|
||||
shapedType, numElements, static_cast<const uint16_t*>(tensorData));
|
||||
shapedType, numElements, static_cast<const uint16_t *>(tensorData));
|
||||
case ScalarType::Byte:
|
||||
return mlirDenseElementsAttrUInt8Get(
|
||||
shapedType, numElements, static_cast<const uint8_t*>(tensorData));
|
||||
shapedType, numElements, static_cast<const uint8_t *>(tensorData));
|
||||
case ScalarType::Char:
|
||||
return mlirDenseElementsAttrInt8Get(
|
||||
shapedType, numElements, static_cast<const int8_t*>(tensorData));
|
||||
shapedType, numElements, static_cast<const int8_t *>(tensorData));
|
||||
|
||||
default:
|
||||
throwUnsupportedTensorError();
|
||||
|
@ -386,8 +382,9 @@ MlirAttribute torch_mlir::convertTensorToMlirElementsAttr(
|
|||
return {nullptr}; // Unreachable.
|
||||
}
|
||||
|
||||
MlirAttribute torch_mlir::importAttribute(
|
||||
MlirLocation loc, torch::jit::Node* node, c10::Symbol symbol) {
|
||||
MlirAttribute torch_mlir::importAttribute(MlirLocation loc,
|
||||
torch::jit::Node *node,
|
||||
c10::Symbol symbol) {
|
||||
MlirContext context = mlirLocationGetContext(loc);
|
||||
auto kind = node->kindOf(symbol);
|
||||
switch (kind) {
|
||||
|
@ -396,8 +393,8 @@ MlirAttribute torch_mlir::importAttribute(
|
|||
// do that.
|
||||
return mlirIntegerAttrGet(mlirIntegerTypeGet(context, 64), node->i(symbol));
|
||||
case torch::jit::AttributeKind::f:
|
||||
return mlirFloatAttrDoubleGet(
|
||||
context, mlirF64TypeGet(context), node->f(symbol));
|
||||
return mlirFloatAttrDoubleGet(context, mlirF64TypeGet(context),
|
||||
node->f(symbol));
|
||||
case torch::jit::AttributeKind::s:
|
||||
return mlirStringAttrGet(context, toMlirStringRef(node->s(symbol)));
|
||||
case torch::jit::AttributeKind::t:
|
||||
|
@ -411,23 +408,23 @@ MlirAttribute torch_mlir::importAttribute(
|
|||
}
|
||||
}
|
||||
|
||||
MlirLocation torch_mlir::getMlirLocationFromNode(
|
||||
MlirContext context, torch::jit::Node* node) {
|
||||
MlirLocation torch_mlir::getMlirLocationFromNode(MlirContext context,
|
||||
torch::jit::Node *node) {
|
||||
MlirLocation loc = mlirLocationUnknownGet(context);
|
||||
|
||||
if (node->hasAttribute(c10::Symbol::attr("source_files"))) {
|
||||
const auto& sourceFiles = node->ss(c10::Symbol::attr("source_files"));
|
||||
const auto& lineNumbers = node->is(c10::Symbol::attr("line_numbers"));
|
||||
const auto& functions = node->ss(c10::Symbol::attr("functions"));
|
||||
const auto &sourceFiles = node->ss(c10::Symbol::attr("source_files"));
|
||||
const auto &lineNumbers = node->is(c10::Symbol::attr("line_numbers"));
|
||||
const auto &functions = node->ss(c10::Symbol::attr("functions"));
|
||||
|
||||
// Chain a sequence of calls to construct single MlirLocation.
|
||||
for (const auto i : c10::irange(sourceFiles.size())) {
|
||||
MlirLocation newLoc = mlirLocationNameGet(
|
||||
context, toMlirStringRef(functions[i]),
|
||||
mlirLocationFileLineColGet(
|
||||
context, toMlirStringRef(sourceFiles[i]), lineNumbers[i],
|
||||
0 /* column is not available */
|
||||
));
|
||||
mlirLocationFileLineColGet(context, toMlirStringRef(sourceFiles[i]),
|
||||
lineNumbers[i],
|
||||
0 /* column is not available */
|
||||
));
|
||||
loc = (i == 0 ? newLoc : mlirLocationCallSiteGet(newLoc, loc));
|
||||
}
|
||||
if (sourceFiles.size() == 1) {
|
||||
|
@ -436,7 +433,7 @@ MlirLocation torch_mlir::getMlirLocationFromNode(
|
|||
loc = mlirLocationCallSiteGet(loc, mlirLocationUnknownGet(context));
|
||||
}
|
||||
} else if (auto flc = node->sourceRange().file_line_col()) {
|
||||
const std::string& file = std::get<0>(*flc);
|
||||
const std::string &file = std::get<0>(*flc);
|
||||
int line = std::get<1>(*flc);
|
||||
int col = std::get<2>(*flc);
|
||||
loc = mlirLocationFileLineColGet(context, toMlirStringRef(file), line, col);
|
||||
|
@ -448,7 +445,7 @@ MlirLocation torch_mlir::getMlirLocationFromNode(
|
|||
locationName = scopeName;
|
||||
}
|
||||
|
||||
if (const c10::FunctionSchema* schema = node->maybeSchema()) {
|
||||
if (const c10::FunctionSchema *schema = node->maybeSchema()) {
|
||||
if (!locationName.empty()) {
|
||||
locationName += "/";
|
||||
}
|
||||
|
@ -462,9 +459,10 @@ MlirLocation torch_mlir::getMlirLocationFromNode(
|
|||
return loc;
|
||||
}
|
||||
|
||||
std::vector<MlirType> torch_mlir::getMlirTypesFromValues(
|
||||
MlirLocation loc, c10::ArrayRef<torch::jit::Value*> values,
|
||||
const ImportOptions& importOptions) {
|
||||
std::vector<MlirType>
|
||||
torch_mlir::getMlirTypesFromValues(MlirLocation loc,
|
||||
c10::ArrayRef<torch::jit::Value *> values,
|
||||
const ImportOptions &importOptions) {
|
||||
std::vector<MlirType> ret;
|
||||
for (auto value : values) {
|
||||
MlirType t = getMlirTypeFromTorchType(loc, value->type(), importOptions);
|
||||
|
@ -493,24 +491,25 @@ std::vector<MlirValue> torch_mlir::adjustStaticInformationForValues(
|
|||
}
|
||||
|
||||
std::stringstream msg;
|
||||
MlirStringCallback printToStream = +[](MlirStringRef str, void* userData) {
|
||||
std::stringstream* stream = static_cast<std::stringstream*>(userData);
|
||||
MlirStringCallback printToStream = +[](MlirStringRef str, void *userData) {
|
||||
std::stringstream *stream = static_cast<std::stringstream *>(userData);
|
||||
stream->write(str.data, str.length);
|
||||
};
|
||||
msg << "unhandled: could not adjust static info for type from ";
|
||||
mlirTypePrint(type, printToStream, static_cast<void*>(&msg));
|
||||
mlirTypePrint(type, printToStream, static_cast<void *>(&msg));
|
||||
msg << " to type ";
|
||||
mlirTypePrint(expectedType, printToStream, static_cast<void*>(&msg));
|
||||
mlirTypePrint(expectedType, printToStream, static_cast<void *>(&msg));
|
||||
mlirEmitError(loc, msg.str().c_str());
|
||||
throw mlir_diagnostic_emitted();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
MlirOperation torch_mlir::createOperationFromSchema(
|
||||
MlirBlock appendToBlock, MlirLocation loc,
|
||||
const c10::FunctionSchema& schema, c10::ArrayRef<MlirType> resultTypes,
|
||||
c10::ArrayRef<MlirValue> operands) {
|
||||
MlirOperation
|
||||
torch_mlir::createOperationFromSchema(MlirBlock appendToBlock, MlirLocation loc,
|
||||
const c10::FunctionSchema &schema,
|
||||
c10::ArrayRef<MlirType> resultTypes,
|
||||
c10::ArrayRef<MlirValue> operands) {
|
||||
MlirContext context = mlirLocationGetContext(loc);
|
||||
|
||||
// Munge the name into the appropriate MLIR operation name.
|
||||
|
@ -520,15 +519,15 @@ MlirOperation torch_mlir::createOperationFromSchema(
|
|||
auto separatorPosition = opNameSuffix.find_first_of("::");
|
||||
assert(separatorPosition != std::string::npos);
|
||||
opNameSuffix.replace(separatorPosition, 2, ".");
|
||||
const std::string& overloadName = schema.overload_name();
|
||||
const std::string &overloadName = schema.overload_name();
|
||||
if (!overloadName.empty()) {
|
||||
opNameSuffix = opNameSuffix + "." + overloadName;
|
||||
}
|
||||
std::string opName = "torch." + opNameSuffix;
|
||||
// If we have a registered op, use it!
|
||||
if (mlirContextIsRegisteredOperation(context, toMlirStringRef(opName))) {
|
||||
return createMlirOperationAtEnd(
|
||||
appendToBlock, opName, loc, resultTypes, operands);
|
||||
return createMlirOperationAtEnd(appendToBlock, opName, loc, resultTypes,
|
||||
operands);
|
||||
}
|
||||
// Oops, no registered op -- create an opaque wrapper so that import can
|
||||
// still succeed. This helps a common use case of filling out registered ops
|
|
@ -25,7 +25,7 @@ namespace torch_mlir {
|
|||
/// Thrown on failure when details are in MLIR emitted diagnostics.
|
||||
class mlir_diagnostic_emitted : public std::runtime_error {
|
||||
public:
|
||||
mlir_diagnostic_emitted(const char* what) : std::runtime_error(what) {}
|
||||
mlir_diagnostic_emitted(const char *what) : std::runtime_error(what) {}
|
||||
mlir_diagnostic_emitted() : std::runtime_error("see diagnostics") {}
|
||||
};
|
||||
|
||||
|
@ -38,36 +38,37 @@ public:
|
|||
/// for Python code).
|
||||
///
|
||||
/// Returns a null type on failure and emits a diagnostic.
|
||||
MlirType
|
||||
getMlirTypeForTorchScalarType(MlirLocation loc, c10::ScalarType scalarType);
|
||||
MlirType getMlirTypeForTorchScalarType(MlirLocation loc,
|
||||
c10::ScalarType scalarType);
|
||||
|
||||
/// Maps a torch type to a corresponding MlirType. Returns a null type
|
||||
/// on failure and emits a diagnostic.
|
||||
MlirType getMlirTypeFromTorchType(
|
||||
MlirLocation loc, const c10::TypePtr& torchType,
|
||||
const ImportOptions& importOptions = {});
|
||||
MlirType getMlirTypeFromTorchType(MlirLocation loc,
|
||||
const c10::TypePtr &torchType,
|
||||
const ImportOptions &importOptions = {});
|
||||
|
||||
/// Creates a FunctionType suitable for expressing the signature of `schema`.
|
||||
///
|
||||
/// This can differ from the type inferred from the block of a
|
||||
/// torch::jit::Function due to derefinement and refinement of tensor types.
|
||||
MlirType getFunctionTypeFromSchema(
|
||||
MlirContext context, const c10::FunctionSchema& schema,
|
||||
const ImportOptions& importOptions = {});
|
||||
MlirType getFunctionTypeFromSchema(MlirContext context,
|
||||
const c10::FunctionSchema &schema,
|
||||
const ImportOptions &importOptions = {});
|
||||
|
||||
/// Creates an appropriate MlirAttribute that holds the same values as `tensor`.
|
||||
MlirAttribute
|
||||
convertTensorToMlirElementsAttr(at::Tensor tensor, MlirLocation loc);
|
||||
MlirAttribute convertTensorToMlirElementsAttr(at::Tensor tensor,
|
||||
MlirLocation loc);
|
||||
|
||||
MlirAttribute
|
||||
importAttribute(MlirLocation loc, torch::jit::Node* node, c10::Symbol symbol);
|
||||
MlirAttribute importAttribute(MlirLocation loc, torch::jit::Node *node,
|
||||
c10::Symbol symbol);
|
||||
|
||||
MlirLocation
|
||||
getMlirLocationFromNode(MlirContext context, torch::jit::Node* node);
|
||||
MlirLocation getMlirLocationFromNode(MlirContext context,
|
||||
torch::jit::Node *node);
|
||||
|
||||
std::vector<MlirType> getMlirTypesFromValues(
|
||||
MlirLocation loc, c10::ArrayRef<torch::jit::Value*> values,
|
||||
const ImportOptions& importOptions = {});
|
||||
std::vector<MlirType>
|
||||
getMlirTypesFromValues(MlirLocation loc,
|
||||
c10::ArrayRef<torch::jit::Value *> values,
|
||||
const ImportOptions &importOptions = {});
|
||||
|
||||
std::vector<MlirValue> adjustStaticInformationForValues(
|
||||
MlirBlock appendToBlock, MlirLocation loc, c10::ArrayRef<MlirValue> values,
|
||||
|
@ -78,10 +79,11 @@ std::vector<MlirValue> adjustStaticInformationForValues(
|
|||
///
|
||||
/// The primary difficulty here is doing the appropriate name munging and
|
||||
/// checking if the have a registered op.
|
||||
MlirOperation createOperationFromSchema(
|
||||
MlirBlock appendToBlock, MlirLocation loc,
|
||||
const c10::FunctionSchema& schema, c10::ArrayRef<MlirType> resultTypes,
|
||||
c10::ArrayRef<MlirValue> operands);
|
||||
MlirOperation createOperationFromSchema(MlirBlock appendToBlock,
|
||||
MlirLocation loc,
|
||||
const c10::FunctionSchema &schema,
|
||||
c10::ArrayRef<MlirType> resultTypes,
|
||||
c10::ArrayRef<MlirValue> operands);
|
||||
|
||||
} // namespace torch_mlir
|
||||
|
|
@ -1,30 +1,3 @@
|
|||
# Static library with core functionality.
|
||||
# We can't use a shared library here, due to issues with linking on macOS-arm64 (the library itself won't build)
|
||||
# For details, see: https://github.com/llvm/torch-mlir/runs/7919012376
|
||||
add_library(TorchMLIRJITIRImporter STATIC
|
||||
class_annotator.cpp
|
||||
function_importer.cpp
|
||||
node_importer.cpp
|
||||
ivalue_importer.cpp
|
||||
torch_to_mlir_utils.cpp
|
||||
)
|
||||
target_link_libraries(TorchMLIRJITIRImporter
|
||||
TorchMLIRAggregateCAPI
|
||||
${TORCH_LIBRARIES}
|
||||
)
|
||||
# Includes are relative to the csrc dir (i.e. #include "jit_ir_importer/...")
|
||||
target_include_directories(TorchMLIRJITIRImporter PUBLIC
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/..
|
||||
)
|
||||
set_target_properties(TorchMLIRJITIRImporter PROPERTIES
|
||||
LIBRARY_OUTPUT_DIRECTORY "${TORCH_MLIR_PYTHON_PACKAGES_DIR}/torch_mlir/torch_mlir/_mlir_libs"
|
||||
OUTPUT_NAME lib_jit_ir_importer
|
||||
PREFIX ""
|
||||
SUFFIX ".a"
|
||||
CXX_VISIBILITY_PRESET "default"
|
||||
COMPILE_FLAGS "${TORCH_CXXFLAGS}"
|
||||
)
|
||||
|
||||
# Separate Pybind MODULE due to issues with a SHARED library.
|
||||
# https://github.com/llvm/torch-mlir/issues/1154
|
||||
add_library(TorchMLIRJITIRImporterPybind MODULE
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "class_annotator_pybind.h"
|
||||
#include "class_annotator.h"
|
||||
#include "jit_ir_importer/class_annotator.h"
|
||||
|
||||
#include <torch/csrc/Dtype.h>
|
||||
#include <torch/csrc/utils/pybind.h>
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "import_options_pybind.h"
|
||||
#include "import_options.h"
|
||||
#include "jit_ir_importer/import_options.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
|
|
|
@ -9,9 +9,9 @@
|
|||
|
||||
#include "module_builder.h"
|
||||
|
||||
#include "function_importer.h"
|
||||
#include "ivalue_importer.h"
|
||||
#include "mlir_utils.h"
|
||||
#include "jit_ir_importer/function_importer.h"
|
||||
#include "jit_ir_importer/ivalue_importer.h"
|
||||
#include "jit_ir_importer/mlir_utils.h"
|
||||
|
||||
#include "mlir-c/Bindings/Python/Interop.h"
|
||||
#include "mlir-c/BuiltinAttributes.h"
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#ifndef TORCHMLIRJITIRIMPORTER_CSRC_BUILDER_H
|
||||
#define TORCHMLIRJITIRIMPORTER_CSRC_BUILDER_H
|
||||
|
||||
#include "class_annotator.h"
|
||||
#include "jit_ir_importer/class_annotator.h"
|
||||
|
||||
#include "mlir-c/IR.h"
|
||||
|
||||
|
|
Loading…
Reference in New Issue