mirror of https://github.com/llvm/torch-mlir
[torch dialect] emit aten.fmax/fmin and add decomposition patterns (#3510)
parent
5a627c46b7
commit
f75cbb4df9
|
@ -4671,6 +4671,54 @@ def Torch_AtenMinimumOp : Torch_Op<"aten.minimum", [
|
|||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenFmaxOp : Torch_Op<"aten.fmax", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::fmax : (Tensor, Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchTensorType:$other
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenFmaxOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||
}
|
||||
void AtenFmaxOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 2, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenFminOp : Torch_Op<"aten.fmin", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
ReadOnly
|
||||
]> {
|
||||
let summary = "Generated op for `aten::fmin : (Tensor, Tensor) -> (Tensor)`";
|
||||
let arguments = (ins
|
||||
AnyTorchTensorType:$self,
|
||||
AnyTorchTensorType:$other
|
||||
);
|
||||
let results = (outs
|
||||
AnyTorchOptionalTensorType:$result
|
||||
);
|
||||
let hasCustomAssemblyFormat = 1;
|
||||
let extraClassDefinition = [{
|
||||
ParseResult AtenFminOp::parse(OpAsmParser &parser, OperationState &result) {
|
||||
return parseDefaultTorchOp(parser, result, 2, 1);
|
||||
}
|
||||
void AtenFminOp::print(OpAsmPrinter &printer) {
|
||||
printDefaultTorchOp(printer, *this, 2, 1);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
def Torch_AtenMishOp : Torch_Op<"aten.mish", [
|
||||
AllowsTypeRefinement,
|
||||
HasValueSemantics,
|
||||
|
|
|
@ -8940,6 +8940,14 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.fmin\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.fmax\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_shape_fn.aten.bitwise_or.Tensor\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
|
||||
" %0 = call @__torch__.torch.jit._shape_functions.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
|
||||
" return %0 : !torch.list<int>\n"
|
||||
|
@ -12471,6 +12479,22 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
|
|||
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%2, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||
" return %4 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.fmax\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %2 = torch.prim.ListConstruct %1#0, %0#0 : (!torch.int, !torch.int) -> !torch.list<optional<int>>\n"
|
||||
" %3 = torch.prim.ListConstruct %1#1, %0#1 : (!torch.int, !torch.int) -> !torch.list<int>\n"
|
||||
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%2, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||
" return %4 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.fmin\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %0:2 = torch.prim.TupleUnpack %arg1 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %1:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
|
||||
" %2 = torch.prim.ListConstruct %1#0, %0#0 : (!torch.int, !torch.int) -> !torch.list<optional<int>>\n"
|
||||
" %3 = torch.prim.ListConstruct %1#1, %0#1 : (!torch.int, !torch.int) -> !torch.list<int>\n"
|
||||
" %4 = call @__torch__.torch_mlir.jit_ir_importer.build_tools.library_generator.promote_dtypes(%2, %3) : (!torch.list<optional<int>>, !torch.list<int>) -> !torch.int\n"
|
||||
" return %4 : !torch.int\n"
|
||||
" }\n"
|
||||
" func.func @\"__torch_mlir_dtype_fn.aten.mm\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.tuple<int, int>) -> !torch.int {\n"
|
||||
" %false = torch.constant.bool false\n"
|
||||
" %int5 = torch.constant.int 5\n"
|
||||
|
|
|
@ -8493,6 +8493,41 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
// Decompose aten.fmax/fmin to aten.maximum/minimum + aten.where(nanMask)
|
||||
template <typename AtenFOpT, typename AtenOpT>
|
||||
class DecomposeAtenFMaxMinOp : public OpRewritePattern<AtenFOpT> {
|
||||
public:
|
||||
using OpRewritePattern<AtenFOpT>::OpRewritePattern;
|
||||
LogicalResult matchAndRewrite(AtenFOpT op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
Location loc = op.getLoc();
|
||||
BaseTensorType outType = cast<BaseTensorType>(op.getType());
|
||||
Type nanMaskType = outType.getWithSizesAndDtype(
|
||||
!outType.hasSizes() ? std::optional<ArrayRef<int64_t>>()
|
||||
: llvm::ArrayRef(outType.getSizes()),
|
||||
rewriter.getI1Type());
|
||||
|
||||
Value self = op.getSelf();
|
||||
Value other = op.getOther();
|
||||
|
||||
Value normalResult =
|
||||
rewriter.create<AtenOpT>(loc, outType, self, other).getResult();
|
||||
Value selfIsNan =
|
||||
rewriter.create<Torch::AtenIsnanOp>(loc, nanMaskType, self).getResult();
|
||||
Value otherIsNan =
|
||||
rewriter.create<Torch::AtenIsnanOp>(loc, nanMaskType, other)
|
||||
.getResult();
|
||||
normalResult = rewriter.create<Torch::AtenWhereSelfOp>(
|
||||
loc, outType, otherIsNan, self, normalResult);
|
||||
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, outType, selfIsNan, other,
|
||||
normalResult);
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
class DecomposeComplexOpsPass
|
||||
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
||||
|
@ -8732,6 +8767,11 @@ public:
|
|||
addPatternIfTargetOpIsIllegal<DecomposeAtenConv2dOp>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<DecomposeAtenConv3dOp>(patterns);
|
||||
|
||||
addPatternIfTargetOpIsIllegal<
|
||||
DecomposeAtenFMaxMinOp<AtenFmaxOp, AtenMaximumOp>>(patterns);
|
||||
addPatternIfTargetOpIsIllegal<
|
||||
DecomposeAtenFMaxMinOp<AtenFminOp, AtenMinimumOp>>(patterns);
|
||||
|
||||
GreedyRewriteConfig config;
|
||||
config.useTopDownTraversal = true;
|
||||
config.maxIterations = GreedyRewriteConfig::kNoLimit;
|
||||
|
|
|
@ -544,6 +544,9 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
|
|||
target.addIllegalOp<AtenTriuOp>();
|
||||
target.addIllegalOp<AtenTriuIndicesOp>();
|
||||
target.addIllegalOp<AtenLinalgNormOp>();
|
||||
target.addIllegalOp<AtenFminOp>();
|
||||
target.addIllegalOp<AtenFmaxOp>();
|
||||
|
||||
for (auto &opName : backendLegalOpsSet) {
|
||||
target.addLegalOp(
|
||||
OperationName(kTorchOpPrefix + opName.first().str(), context));
|
||||
|
|
|
@ -1673,6 +1673,8 @@ TOSA_PASS_SET = {
|
|||
"ElementwiseFlattenBroadcastModule_basic",
|
||||
"ElementwiseFloorIntModule_basic",
|
||||
"ElementwiseFloorModule_basic",
|
||||
"ElementwiseFmaxModule_basic",
|
||||
"ElementwiseFminModule_basic",
|
||||
"ElementwiseGeFloatIntScalarModule_basic",
|
||||
"ElementwiseGeFloatScalarModule_basic",
|
||||
"ElementwiseGeIntScalarModule_basic",
|
||||
|
@ -2215,6 +2217,8 @@ ONNX_XFAIL_SET = {
|
|||
"ElementwiseAtenFloorDivideTensorNegativeModule_basic",
|
||||
"ElementwiseLog10IntModule_basic",
|
||||
"ElementwiseLog2IntModule_basic",
|
||||
"ElementwiseFminModule_basic",
|
||||
"ElementwiseFmaxModule_basic",
|
||||
"FlipModuleStaticShape_basic",
|
||||
"FlipNegativeIndexModule_basic",
|
||||
"PixelShuffleModuleStaticRank4Float32_basic",
|
||||
|
|
|
@ -1403,6 +1403,12 @@ def aten〇minimum〡shape(self: List[int], other: List[int]) -> List[int]:
|
|||
def aten〇maximum〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.broadcast(self, other)
|
||||
|
||||
def aten〇fmin〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.broadcast(self, other)
|
||||
|
||||
def aten〇fmax〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.broadcast(self, other)
|
||||
|
||||
def aten〇bitwise_or〇Tensor〡shape(self: List[int], other: List[int]) -> List[int]:
|
||||
return upstream_shape_functions.broadcast(self, other)
|
||||
|
||||
|
@ -3655,6 +3661,22 @@ def aten〇minimum〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: T
|
|||
dtypes = [self_dtype, other_dtype]
|
||||
return promote_dtypes(ranks, dtypes)
|
||||
|
||||
@check_dtype_function(_check_two_tensor_op())
|
||||
def aten〇fmax〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int]) -> int:
|
||||
other_rank, other_dtype = other_rank_dtype
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
ranks: List[Optional[int]] = [self_rank, other_rank]
|
||||
dtypes = [self_dtype, other_dtype]
|
||||
return promote_dtypes(ranks, dtypes)
|
||||
|
||||
@check_dtype_function(_check_two_tensor_op())
|
||||
def aten〇fmin〡dtype(self_rank_dtype: Tuple[int, int], other_rank_dtype: Tuple[int, int]) -> int:
|
||||
other_rank, other_dtype = other_rank_dtype
|
||||
self_rank, self_dtype = self_rank_dtype
|
||||
ranks: List[Optional[int]] = [self_rank, other_rank]
|
||||
dtypes = [self_dtype, other_dtype]
|
||||
return promote_dtypes(ranks, dtypes)
|
||||
|
||||
@check_dtype_function(
|
||||
_check_tensors_with_the_same_dtype(tensor_shapes=[(3, 4), (4, 3)]) +
|
||||
# Different width
|
||||
|
|
|
@ -463,6 +463,8 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
|
|||
)
|
||||
emit("aten::maximum : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::minimum : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::fmax : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::fmin : (Tensor, Tensor) -> (Tensor)")
|
||||
emit("aten::mish : (Tensor) -> (Tensor)")
|
||||
emit("aten::xlogy.Tensor : (Tensor, Tensor) -> (Tensor)")
|
||||
emit(
|
||||
|
|
|
@ -1440,6 +1440,64 @@ def ElementwiseMaximumIntModule_basic(module, tu: TestUtils):
|
|||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseFmaxModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1], torch.float32, True),
|
||||
([-1], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x, y):
|
||||
return torch.ops.aten.fmax(x, y)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseFmaxModule())
|
||||
def ElementwiseFmaxModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(4), tu.rand(4))
|
||||
module.forward(tu.rand(4), torch.tensor([1.0, torch.nan, -0.5, -0.3]))
|
||||
module.forward(
|
||||
torch.tensor([0.8, torch.nan, torch.nan, -0.3]),
|
||||
torch.tensor([1.0, torch.nan, -0.4, torch.nan]),
|
||||
)
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseFminModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@export
|
||||
@annotate_args(
|
||||
[
|
||||
None,
|
||||
([-1], torch.float32, True),
|
||||
([-1], torch.float32, True),
|
||||
]
|
||||
)
|
||||
def forward(self, x, y):
|
||||
return torch.ops.aten.fmin(x, y)
|
||||
|
||||
|
||||
@register_test_case(module_factory=lambda: ElementwiseFminModule())
|
||||
def ElementwiseFminModule_basic(module, tu: TestUtils):
|
||||
module.forward(tu.rand(4), tu.rand(4))
|
||||
module.forward(tu.rand(4), torch.tensor([1.0, torch.nan, -0.5, -0.3]))
|
||||
module.forward(
|
||||
torch.tensor([0.8, torch.nan, torch.nan, -0.3]),
|
||||
torch.tensor([1.0, torch.nan, -0.4, torch.nan]),
|
||||
)
|
||||
|
||||
|
||||
# ==============================================================================
|
||||
|
||||
|
||||
class ElementwiseMaxOtherModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
|
Loading…
Reference in New Issue