Add E2E support for AtenLogicalOrOp. (#883)

pull/899/head snapshot-20220604.492
Vidush Singhal 2022-06-03 19:21:03 -04:00 committed by GitHub
parent abf5c94a1b
commit fc419b1e7d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 224 additions and 3 deletions

View File

@ -982,6 +982,53 @@ def Torch_AtenDiv_TensorOp : Torch_Op<"aten.div_.Tensor", [
}];
}
def Torch_AtenLogicalOrOp : Torch_Op<"aten.logical_or", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::logical_or : (Tensor, Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$other
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenLogicalOrOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 2, 1);
}
void AtenLogicalOrOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
}
def Torch_AtenLogicalOr_Op : Torch_Op<"aten.logical_or_", [
IsTrailingUnderscoreInplaceVariant,
AllowsTypeRefinement
]> {
let summary = "Generated op for `aten::logical_or_ : (Tensor, Tensor) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchTensorType:$other
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenLogicalOr_Op::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 2, 1);
}
void AtenLogicalOr_Op::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
}
def Torch_AtenLerpTensorOp : Torch_Op<"aten.lerp.Tensor", [
AllowsTypeRefinement,
HasValueSemantics,

View File

@ -190,6 +190,17 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], dtype);
return b.create<arith::AndIOp>(loc, lhs, rhs);
}
if (auto logicalOr = dyn_cast<AtenLogicalOrOp>(op)) {
MLIRContext *context = op->getContext();
Type floatDtype = mlir::FloatType::getF64(context);
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], floatDtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], floatDtype);
Value zero =
b.create<arith::ConstantOp>(loc, b.getFloatAttr(floatDtype, 0));
Value lhsTest = createNotEqual(b, loc, floatDtype, lhs, zero);
Value rhsTest = createNotEqual(b, loc, floatDtype, rhs, zero);
return b.create<arith::OrIOp>(loc, lhsTest, rhsTest);
}
if (isa<AtenAbsOp>(op))
return b.create<math::AbsOp>(loc, payloadArgs[0]);
if (isa<AtenSigmoidOp>(op)) {
@ -844,7 +855,8 @@ public:
AtenWhereSelfOp, AtenCeilOp, AtenGtTensorOp, AtenEqTensorOp,
AtenLtTensorOp, AtenSubScalarOp, AtenAddScalarOp, AtenThresholdOp,
AtenThresholdBackwardOp, AtenCloneOp, AtenSinOp, AtenCosOp,
AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp>(op))
AtenNeScalarOp, AtenNegOp, AtenMaskedFillScalarOp,
AtenLogicalOrOp>(op))
return rewriter.notifyMatchFailure(op, "not a supported elementwise op");
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
@ -1581,7 +1593,8 @@ void mlir::torch::torch_to_linalg::populateUncategorizedPatternsAndLegality(
AtenGtScalarOp, AtenGeScalarOp, AtenEqScalarOp, AtenLtScalarOp,
AtenLeScalarOp, AtenWhereSelfOp, AtenGtTensorOp, AtenEqTensorOp,
AtenLtTensorOp, AtenThresholdOp, AtenThresholdBackwardOp, AtenCloneOp,
AtenSinOp, AtenCosOp, AtenNeScalarOp, AtenMaskedFillScalarOp>();
AtenSinOp, AtenCosOp, AtenNeScalarOp, AtenMaskedFillScalarOp,
AtenLogicalOrOp>();
patterns.add<ConvertElementwiseOp>(typeConverter, context);
target.addIllegalOp<AtenNllLossForwardOp>();
patterns.add<ConvertAtenDetachOp>(typeConverter, context);

View File

@ -673,7 +673,7 @@ ChangeResult TypeAnalyzer::visitOperation(
// Dtype is always i1.
if (isa<AtenEqScalarOp, AtenGeScalarOp, AtenGtScalarOp, AtenLtScalarOp,
AtenLeScalarOp, AtenNeScalarOp, AtenAnyOp, AtenAllOp, AtenEqTensorOp,
AtenGtTensorOp, AtenLtTensorOp>(op)) {
AtenGtTensorOp, AtenLtTensorOp, AtenLogicalOrOp>(op)) {
auto knowledge =
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
knowledge.dtype = IntegerType::get(op->getContext(), 1);

View File

@ -2155,6 +2155,10 @@ module {
%0 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.upstream_shape_helpers.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>
return %0 : !torch.list<int>
}
func.func @"__torch_mlir_shape_fn.aten.logical_or"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {
%0 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.upstream_shape_helpers.broadcast(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>
return %0 : !torch.list<int>
}
func.func @"__torch_mlir_shape_fn.aten.threshold"(%arg0: !torch.list<int>, %arg1: !torch.float, %arg2: !torch.float) -> !torch.list<int> {
%0 = call @__torch__.torch_mlir.dialects.torch.importer.jit_ir.build_tools.upstream_shape_helpers.unary(%arg0) : (!torch.list<int>) -> !torch.list<int>
return %0 : !torch.list<int>

View File

@ -710,6 +710,9 @@ def atenmaximum(self: List[int], other: List[int]) -> List[int]:
def atenbitwise_andTensor(self: List[int], other: List[int]) -> List[int]:
return upstream_shape_helpers.broadcast(self, other)
def atenlogical_or(self: List[int], other: List[int]) -> List[int]:
return upstream_shape_helpers.broadcast(self, other)
def atenthreshold(self: List[int], threshold: float, value: float) -> List[int]:
return upstream_shape_helpers.unary(self)

View File

@ -249,6 +249,7 @@ def emit_ops(emitter_td: TextEmitter, registry: Registry):
"aten::sub.Tensor : (Tensor, Tensor, Scalar) -> (Tensor)",
"aten::mul.Tensor : (Tensor, Tensor) -> (Tensor)",
"aten::div.Tensor : (Tensor, Tensor) -> (Tensor)",
"aten::logical_or : (Tensor, Tensor) -> (Tensor)",
"aten::lerp.Tensor : (Tensor, Tensor, Tensor) -> (Tensor)",
"aten::eq.Tensor : (Tensor, Tensor) -> (Tensor)",
"aten::gt.Tensor : (Tensor, Tensor) -> (Tensor)",

View File

@ -1302,3 +1302,156 @@ class ElementwiseNegModule(torch.nn.Module):
@register_test_case(module_factory=lambda: ElementwiseNegModule())
def ElementwiseNegModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseAtenLogicalOrOpModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.bool, True),
([-1], torch.bool, True),
])
def forward(self, x, y):
return torch.ops.aten.logical_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseAtenLogicalOrOpModule())
def ElementwiseAtenLogicalOrOpModule_basic(module, tu: TestUtils):
module.forward(torch.tensor([False, True]), torch.tensor([False, False]))
class ElementwiseAtenLogicalOrOpDiffArgs1Module(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float64, True),
([-1], torch.int64, True),
])
def forward(self, x, y):
return torch.ops.aten.logical_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseAtenLogicalOrOpDiffArgs1Module())
def ElementwiseAtenLogicalOrOpDiffArgs1Module_basic(module, tu: TestUtils):
module.forward(torch.tensor([0.2, 0.1]), torch.tensor([0, 1]))
# ==============================================================================
class ElementwiseAtenLogicalOrOpDiffArgs2Module(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.bool, True),
([-1], torch.int64, True),
])
def forward(self, x, y):
return torch.ops.aten.logical_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseAtenLogicalOrOpDiffArgs2Module())
def ElementwiseAtenLogicalOrOpDiffArgs2Module_basic(module, tu: TestUtils):
module.forward(torch.tensor([True, False]), torch.tensor([0, 1]))
# ==============================================================================
class ElementwiseAtenLogicalOrOpDiffArgs3Module(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.int64, True),
([-1], torch.bool, True),
])
def forward(self, x, y):
return torch.ops.aten.logical_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseAtenLogicalOrOpDiffArgs3Module())
def ElementwiseAtenLogicalOrOpDiffArgs3Module_basic(module, tu: TestUtils):
module.forward(torch.tensor([1, 2]), torch.tensor([False, True]))
# ==============================================================================
class ElementwiseAtenLogicalOrOpRandomModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1, -1], torch.int64, True),
([-1, -1, -1, -1], torch.int64, True),
])
def forward(self, x, y):
return torch.ops.aten.logical_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseAtenLogicalOrOpRandomModule())
def ElementwiseAtenLogicalOrOpRandomModule_basic(module, tu: TestUtils):
module.forward(torch.randint(3, 10, (2, 3, 4, 5)), torch.randint(10, 100, (2, 3, 4, 5)))
# ==============================================================================
class ElementwiseAtenLogicalOrOpRandomFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1, -1], torch.float32, True),
([-1, -1, -1, -1], torch.float32, True),
])
def forward(self, x, y):
return torch.ops.aten.logical_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseAtenLogicalOrOpRandomFloatModule())
def ElementwiseAtenLogicalOrOpRandomFloatModule_basic(module, tu: TestUtils):
module.forward(torch.rand(2, 3, 3, 5), torch.rand(2, 3, 3, 5))
# ==============================================================================
class ElementwiseAtenLogicalOrOpNegativeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1, -1], torch.int64, True),
([-1, -1, -1, -1], torch.int64, True),
])
def forward(self, x, y):
return torch.ops.aten.logical_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseAtenLogicalOrOpNegativeModule())
def ElementwiseAtenLogicalOrOpNegativeModule_basic(module, tu: TestUtils):
module.forward(torch.neg(torch.randint(3, 10, (2, 3, 4, 5))), torch.neg(torch.randint(10, 100, (2, 3, 4, 5))))
# ==============================================================================
class ElementwiseAtenLogicalOrOpBrodcastModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.int64, True),
([-1, -1], torch.int64, True),
])
def forward(self, x, y):
return torch.ops.aten.logical_or(x, y)
@register_test_case(module_factory=lambda: ElementwiseAtenLogicalOrOpBrodcastModule())
def ElementwiseAtenLogicalOrOpBrodcastModule_basic(module, tu: TestUtils):
module.forward(torch.randint(3, (3,)), torch.randint(3, (4, 3)))