The three remaining compare operations
onnx.Greater
onnx.Less
onnx.GreaterOrEqual
Are also added with this push request.
This concludes a set of basic tensor compare functions.
Lowerings for `transpose` from ONNX to `aten`. Implementation depends on
making multiple `aten.transpose` operations swapping pairs of dimensions.
As `onnx.transpose` can swap around any dimensions it may require
constructing multiple `aten.transpose`.
This commit adds the OnnxToTorch support for Reciprocal, Round,
ScatterElements, Sigmoid, Sin, Tanh, Sqrt, Sub, Sum, Where, Xor,
Squeeze, Unsqueeze ops.
For reviewers, the ops that weren't trivial and probably require extra
review are Sum, Squeeze, and Unsqueeze.
Lowerings for `selu` lowerings for ONNX to the corresponding torch
implementations. Torch's `selu` implementation has fewer features so
we use the a generalized `elu` with the input scale set to `1.0`.
This commit adds the OnnxToTorch support for BitwiseXor, BitwiseOr, Div, Equal, Cast,
Ceil, Floor, Cos, and Clip op.
This commit also adds the TorchToLinalg support for aten.clamp.Tensor and aten.clamp_min.Tensor op.
Signed-Off By: vivekkhandelwal1424@gmail.com
This commit adds the OnnxToTorch support for Atan, Bitshift, BitwiseAnd,
and BitwiseNot op.
This commit also adds the TorchToLinalg support for AtenBitwiseLeftShiftTensorOp.
Signed-Off By: vivekkhandelwal@nod-labs.com
Adds a pipeline to convert custom ops and metadata represented as
`torch.operator` custom ops to corresponding `torch` ops where possible.
This is part of a multi-part approach for building ONNX import in as a
regular feature of torch-mlir. It is focused on the conversions vs the
infra. We will end up maintaining a [pure-python
importer](https://github.com/nod-ai/SHARK-Turbine/blob/main/python/shark_turbine/importers/onnx_importer.py)
to go with this in torch-mlir, and we will also maintain test case
generation utilities derived from it.
I have left substantial documentation in the README of the conversion
directory, including the recommended approach that we will take to keep
building this out.
(note that this organizes the code to coincide with the refactoring in
#2442 versus the current flat arrangement)