This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20
There are two primary goals:
1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.
Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.
This also takes steps toward a couple of other layering enhancements:
* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.
It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.
Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
Credit to @vivekkhandelwal1 for finding the necessary changes.
Summary of changes:
- Switch Tosa_IntArrayAttr[N], Tosa_IntArrayAttrUpto[N] to DenseI64ArrayAttr.
- Replace kNoIterationLimit with kNoLimit. (https://reviews.llvm.org/D140525)
- Add dependency on MhloPasses when MHLO is enabled
- Specify result type when using mhlo::DotOp
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.
Also add torch.bincount op lowering with the help of TMTensor dialect
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit moves the helper function which are common across
different torch-mlir conversion passes into a common directory
Utils.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```
The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.
Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
`abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
A few remain in examples/docs that will be naturally be updated in due
time.
This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.
As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.
torch-mlir has two top-level python packages (built into the
`python_packages` directory):
- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
depend on PyTorch). This also involves building the aggregate CAPI for
`torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
PyTorch (or C++ code that transitively does).
Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):
- `npcomp_torch`: Contains the e2e test framework and testing configs
that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
IREE that `npcomp_torch` uses, along with its own
`MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
python bindings. (all other functionality has been stripped out)
After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).
Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)
- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
`frontends/pytorch` -- mainly things related to the e2e framework
itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.
There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.
The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.
The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.
This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).
This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
This converts a basic list op (torch.prim.ListConstruct) to the IREE
dialect.
```
def forward(self, x: float):
return [x, x]
```
turns into:
```
builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> {
%0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float>
return %0 : !torch.list<!torch.float>
}
```
which turns into:
```
builtin.func @forward(%arg0: f64) -> !iree.list<f64> {
%c1 = constant 1 : index
%c0 = constant 0 : index
%c2 = constant 2 : index
%0 = iree.list.create %c2 : !iree.list<f64>
iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64
iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64
return %0 : !iree.list<f64>
}
```
As part of doing this, I realized that it was time to formalize the IR
form that we reach right before running TorchTo{Linalg,Std,...}. We now
call it the "Torch backend contract". We then lower the "Torch backend
contract" to the "npcomp backend contract", which involves the new
TorchConversion (`torch_c`) dialect, which holds ops that need to
operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE
list, etc.) and the `!torch` types.
This made more sense, as I realized that if I didn't factor out
`torch_c` then the Torch dialect would have a dependency on IREE
dialect (we previously didn't notice this was an issue because we only
depended on `builtin` types), which seemed wrong to me.
Recommended review order:
- TorchToIREE.cpp / `TorchToIREE/basic.mlir`
- Look at the new structure of createTorchScriptToNpcompBackendPipeline.
It now lives in TorchConversion/Transforms/Passes.cpp and cleanly
calls into `Torch::createTorchScriptToTorchBackendPipeline` for the
frontend lowering to the Torch backend contract.
- Mechanical change extracting
`torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new
TorchConversion dialect, and a few passes specific to the lowering
from the Torch backend contract to the npcomp backend contract.
- Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that
we convert lists as part of operand materialization, we need to use
the original operands). Also added test for AtenMaxPool2dOp and fixed
m_TorchConstantIntList.
- TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that
are created as part of operand materialization for conv/max pool/avg pool ops
in TorchToLinalg.
These were legacy concepts that are now superceded by direct Torch to
linalg-on-tensors lowering. These were based on some very early thinking
related to the layering of frontends vs codegen, which is now obsolete
because:
- We expected a lot more centralization at the frontend (TCF) level. It
turns out that frontend needs really vary a lot, and there is no grand
unifying TCF dialect plausible. The additional layer isn't worth it.
- Linalg-on-tensors obsoletes the primary need for TCP. There are still
a few things not representable with linalg-on-tensors, but the support
is growing and the whole "not included in linalg-on-tensors" direction
needs to be rethought. Our TCP dialect didn't cover any of the
actually important things in this space (such as sort, FFT, top-k,
etc.).
See historical [slides](https://drive.google.com/file/d/1iljcpTQ5NPaMfGpoPDFml1XkYxjK_6A4/view) / [recording](https://drive.google.com/file/d/1jSPa8TwPKUt0WuLquGc8OgSUVYJHMvWZ/view)
for more details on the origin story here.
Their presence was confusing users too
[bug](https://github.com/llvm/mlir-npcomp/issues/248).
Also,
- Trim down npcomp-run-mlir testing. It was testing TCF to TCP
lowering for the most part. The essential stuff is retained and
rephrased with linalg-on-tensors. (we should probably rename it
"refback-run" or something, as it is just a way to invoke RefBackend)
- test/Python/Backend/RefJIT/simple_invoke_numpy.py is XFAIL'ed. Our
"anti-framework" direction seems to be the likely future path.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.
This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).
Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
imported as `torch.somens.someunqualname.someoverloadname` (skip the
last dotted part if the overload name is empty), OR, if we don't have
such an op registered, it is imported as
`torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
- The addition of the "overload name" is a critical element here, as
the `(ns,unqual,overload)` triple is unique, which solves a lot of
problems we were having.
- This involves having separate MLIR ops for the `trailing_` and
`.out` variants and all the different overloads. This seemed
necessary, because the set of overloads is so wild and varied and
unstructured. The previous design was leaning into some underlying
structure that just isn't there -- the default situation is
the "random overload that we want to manage on the MLIR side",
rather than that being an exception. E.g. `aten::ne` (not-equal)
has 21 overloads, only 4 of which are c10 dispatcher ops see
[gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
and the "out" variant is really called `.Tensor_out` instead of
`.out` as it frequently is for other ops.
- Rationale for all being in `torch` namespace: the set of operators
are so varied and unstructured that "dialect per namespace"
doesn't result in anything resembling the typical MLIR dialect
boundary expectations. We could maybe draw the boundary at
dispatcher ops vs non-dispatcher ops, but that doesn't seem to
really result in very much useful structure at this point in time.
- Note: within the torch operator registry, we effectively have a
mini-basicpy subdialect (already type-resolved), which is reasonably
structured.
- The existing Torch op interfaces are also removed -- now that we
track the overload name, we can losslessly find the original
operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
`ReduceOpVariantsPass` that keys off certain traits (and perhaps
eventually interfaces) to reduce variants of ops to a smaller set,
ideally operating on immutable tensors and using surrounding ops to
model the mutability/aliasing aspects.
- Note: `torch.ns.unqual.overload` ops allow both immutable and
mutable tensors (unlike the previous hard distinction in the common
case). This is a premonition for a future change that will introduce a
bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
"ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
It should look somewhat familiar, but the benefit of hindsight has
allowed a lot of simplifications.
The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).
Recommended review order:
- Start at some of the new import IR, e.g. in
`frontends/pytorch/test/node_import/prim.py`,
`frontends/pytorch/test/acap_export/test_export_add3.py`, and other
tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
and associated generated files:
- `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
- `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
`frontends/pytorch/csrc/builder`. Probably most interesting is the new
code in `torch_to_mlir_utils.cpp` that has the logic to create the
`torch.operator` ops or `torch.ns.unqual.overload` ops.
This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
Interestingly, TorchScript has its own op (`torch::jit::Operator`)
registry separate from the dispatcher (it is a superset of the
dispatcher).
This is where the "prim" ops and some "aten" ops (that should probably
be renamed to "prim") live. In particular, `aten::__is__` is in that
latter category of "aten but really prim". This registry is also the
source of truth for what the TorchScript interpreter calls into when it
executes.
The bulk of the "not part of the dispatcher" ops live in
09feb5f579/torch/csrc/jit/runtime/register_prim_ops.cpp (L82)
And the registry itself lives in:
09feb5f579/torch/csrc/jit/runtime/operator.cpp (L196)
This fold further reduces the IR of ResNet by folding away some
more not-taken branches. These not-taken branches in ResNet require
first-class handling of the list type which we don't yet have on any
backend.
This is our first op with error semantics, and stresses the system.
There are a few design notes of special interest:
- RefineTypes.cpp's note about shape inference in the presence of code
that dynamically produces and error, and it is provable statically.
- ATenToLinalg.cpp's notes about future automation of the ATen->linalg
path.
- The notes in Passes.td about using low-tech `std.assert` ops instead
of `shape.assuming`.
Note: Doesn't work on IREE yet due to the `std.assert` op (needs to be
lowered to `vm.fail` on the IREE side).
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
This involved adding a `tcp.splatted` op to splat a dynamically sized
init tensor. See rationale in TCPOps.td docs.
One interesting observation is that when lowering tcf.matmul to
linalg.matmul, we need to both 1) create the error checks and 2)
calculate a shape transfer function to create the init tensors.
Previously, 2) was deferred to bufferizing tcp.matmul later. I'm not
sure if this is a conflation of concerns or not. For now, it's not a big
burden.
* Conversions are very simple, suporting mul, maximum and add (alpha=1 only).
* Example added with pass pipeline needed to run.
* Much missing off of the golden path but sufficient for such simple cases.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
It was previously going through this awkward route that prematurely
created linalg.generic ops, which was an annoying layering problem since
we can't compute a shape transfer function for linalg.generic in the
general case. Now we pass it through the same path as tcp.matmul, with
the shape transfer function being defined for tcp.add.
This also removed the need for TCPToLinalg (now deleted). The equivalent
of that is happening in lower-shaped-results-to-memref. One interesting
outcome of this: we're basically using linalg as a "Buffer TCP". We
might want to look into using named structured ops for more of TCP, but
that would be a big velocity hit since then any change to the ODS /
verification for those ops would be a change to the upstream structured
op ODS generator. After we have more experience defining this manually,
we should re-evaluate rebasing TCP on generated named linalg ops.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.
Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
* Move dialect registration to tablegen.
* Register the ListType in tablegen.
* Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)
Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
* Conversions to std for numeric binary expressions, numeric to_boolean, and numeric comparisons.
* Added folders to constant ops to comply with requirements of the pass system.
* Extended the frontend with parameter/result annotation processing for primitives (can specify types for function arguments).
* Added (empty) directory/sources for IREEVM conversions. These are only enabled if IREE is enabled.