* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
This cleans up the lowering pipeline to easily allow extending to
multiple binary ops. It looks fairly repetitive at multiple levels, but
I don't want to prematurely generalize. I think that in principle we
could derive a large swatch of TCF + TCP from a single linalg-style
specification. Another direction is to use an OpInterface (something
like "buildLinalgGenericBody"). I'm keeping my eye on it.
In a subsequent commit, I'll mechanically add a set of binary ops
modeled off of the std arithmetic ops.
I'm pretty happy with how this turned out. It looks pretty much like it
should -- one change at each layer. This particular op bottoms out on
linalg which takes care of the rest.
- Add tcf.matmul
- Add tcp.matmul
- Add TCF->TCP lowering
- Add tcp.matmul shape transfer function (BypassShapes.cpp)
- Add tcp.matmul -> linalg.matmul lowering (LowerShapedResultsToMemref.cpp)
- Add support to LowerShapeConstraints for lowering the new
shape.cstr_require
This matmul op is pretty limited in its capabilities. There is no
batching and no multidimensional contraction. Certainly more design work
will be needed to find the right abstractions that aren't too general
but also help to canonicalize many cases from frontends. This is mainly
to show that adding a new op needn't be very "scary" once we have the
e2e infra in place.
Also,
- this clears out some exploratory cruft from the TCF dialect now that
this is starting to become real.
This now gets the overall "RefE2E" compilation stack to a point that I'm
fairly happy with. We simplify it by mostly embracing the "descriptor"
view of the world.
The overall flow is best understood by reading through the
createE2ELoweringPipeline function in lib/E2E/E2E.cpp
That function creates a pass pipeline that lowers from "TCF" (which is
~numpy level of abstraction) down to LLVM IR.
A brief high-level summary of what happens there:
1. TCF to TCP conversion. This involves reifying error handling in the
form of shape constraints. See test/Conversion/TCFToTCP/basic.mlir
2. Lowering shape constraints. This converts shape constraints into
eager error-handling code. See test/E2E/lower-shape-constraints.mlir
This pass will soon go upstream.
Because this lowers to std.assert, some later passes like
LowerToNpcomprtABI and LowerToLLVM are updated to properly plumb this
through e2e.
See test/npcomp-run-mlir/invalid-broadcast.mlir for an execution test
that properly aborts in case of an error.
3. Lowering tensors to memrefs. This is done via a series of passes
rather than an single mega conversion. Unlike the previous code that
mixed in the npcomprt ABI stuff here, it's now a very clean "pure
memref" conversion.
See test/E2E/lower-*-to-memref.mlir and
lib/E2E/TensorToMemref/
Most of the changes are concentrated here.
4. As part of the above, we use the upstream ConvertShapeToStandard for
lowering shapes.
5. We lower linalg to loops and lower loops to CFG using upstream
passes.
6. Rewrite the "ABI" boundaries of the program to npcomprt data
structures (LowerToNpcomprtABI). This mainly affects ABI boundaries and
how global tensor constants are represented. One of the major
improvements in this commit is that now it's a very clean rewrite that
just replaces memrefs on ABI boundaries with !npcomprt.tensor (before
there was a get_extent function that is not needed).
See test/E2E/lower-to-npcomprt-abi.mlir
7. Lower to LLVM with upstream mlir patterns + some patterns for the
npcomprt lowerings.
One aspect here that is still a remnant of a non-descriptor-based tensor
to memref flow is the BypassShapes + LowerShapedResultsToMemref.
BypassShapes wraps the "tensor compute" ops in a tcp.shaped_results
(basically a "tie_shape" kind of op), and then
LowerShapedResultsToMemref uses those annotations to allocate output
buffers while lowering the "tensor compute ops". Note that there are
very few "tensor compute" ops currently supported (tcp.add +
tcp.broadcast_to), so we just hardcode them in both passes.
Realistically, I expect this to go away as we fully embrace the
descriptor-based approach for simplicity, so don't look too deep into
it.
* Primarily, the upstream shape dialect now uses tensor<?xindex> for non-erroring, immediate shape calculations (and will return this for shape_of of a tensor or memref).
* In addition, upstream passes do not yet exist for fully lowering to standard ops, so the passes here need to be extended to handle this new convention.
* This should be seen as an intermediate state, necessary to integrate a new LLVM version and needs more work and cleanup for generality.
* There is a good deal of awkwardness in these conversions. The hope is that additional upstream work will yield better defined conversion paths once out of this intermediate state.
This more clearly captures its semantics as a structural "observer" of
code that we currently mark as NoSideEffect but eventually lowers to
eager error handling code.
Also, update LowerRankedShapes to erase it, now that the layering here
is clear. That pass reifies the eager error handling code, so the need
for the dummy op to keep things alive isn't needed.
With this change, we are now ready to start lowering to LLVM!
This is the current print-ir-after-all from e2e-lowering-pipeline:
https://reviews.llvm.org/P8221
The idea was half-baked and after some deep thought felt like a solution
looking for a problem. What we had here (and is removed in this patch)
just wasn't pulling its weight.
I cannot think of anything we would want to do with tcp.island as it is
removed here beyond just sinking and merging them within a basic block,
such that the witness argument is kind of pointless (only matters for
hoisting).
TCP compute ops like tcp.add and tcp.broadcast_to have the strong
invariant of "pure or undefined behavior", which means they are always
safe to sink. The island concept as removed here conferred no benefit.
Also, I'll note that "islands" are a trick you can only play once in a
system (unless they strictly nest). I have some early-stage thoughs on
having an island concept that helps with modeling tensor shapes
robustly which seems promising (the island would serve a similar role as
tie_shape).