Add aten.isclose op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Add aten.unflatten.int op
Add its torch-to-tosa lowering
Update the TorchToTosa/basic.mlir tests
To test e2e tosa lowering:
`python -m e2e_testing.main -v -c=tosa`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.
Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.
In the linalg pipeline, many runtime checks are elided when this returns
true.
Corresponding commits:
* mlir-hlo: 16886a108eff5197f816ca0f1950cc5ff1b078d9
* stablehlo: 77a59815a82b34f7b08ed2d42a711d9920682d0e
* llvm-project: 4acc3ffbb0af5631bc7916aeff3570f448899647
* Adapt to ByteCodeOpInterface changes.
* Adapt to RegionBranchPoint changes: https://reviews.llvm.org/D159116
* Adapt inferReturnTypes to get the value from properties.
* Adapt invalid.mlir to properties syntax
* [TOSA] Align with custom assembly format change.
* [TOSA] handle change of axis to int32 type
* [TOSA] Restore improper convert to i32
Landing with Windows broken (it cannot be fixed because of the way the mlir-hlo dep is inserted). Will followup with an untangling.
---------
Co-authored-by: TatWai Chong <tatwai.chong@arm.com>
Co-authored-by: Eric Kunze <eric.kunze@arm.com>
* RecomposeComplexOps: Remove dead slice op
* lib/Dialect/Torch/IR/TorchOps.cpp: Fold slice ops even when they are on non-value tensors
* lib/Conversion/TorchToTosa/TorchToTosa.cpp: Fix slice start/end out of range/none
* lib/Dialect/Torch/IR/TorchOps.cpp: AtenSliceTensorOp::fold: Fold slices that go from 0:int_max
* More tests for aten.split.Tensor
This commit adds the support for index.Tensor op when the index values
are negative. This commit wraps around the index values by checking
their values at run time.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
check the return type of the division to figure out whether to use
the floating point implementation of a division or to use the integer.
the issue rose from the fact that the inputs are all integer but the
result was casted to floating point. The conversion then chose to
use the integer implementation of division which is not legal in tosa
when all the inputs get casted to floating point.
fix(TorchToLinalg): AtenDivScalarOp
upcast self operand as well if applicable, the self operand must also
be casted to float as it can be an integer.
Lowering torch operations that allow different compatible data types
in its operands to tosa end up generating invalid tosa IR with mixed
data types. In tosa spec, certain operations (generally element-wise
operations) require all operands to have the same data type.
Add wrapper functions for those element-wise tosa ops to perform op
creation with type conversion if necessary.
This commits adds the support for cases for index_put_op:
1.) where index is a 2-d tensor.
2.) where indices is a list of tensors and none, with exactly
2 non none tensors along the consecutive dimensions.
This commit also adds a utility to compute the broadcast shape
given the two input tensors.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
Credit to @vivekkhandelwal1 for finding the necessary changes.
Summary of changes:
- Switch Tosa_IntArrayAttr[N], Tosa_IntArrayAttrUpto[N] to DenseI64ArrayAttr.
- Replace kNoIterationLimit with kNoLimit. (https://reviews.llvm.org/D140525)
- Add dependency on MhloPasses when MHLO is enabled
- Specify result type when using mhlo::DotOp
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>