* Update buildAndTest.yml
test with fast-fail matrix builds
* Remove redundant and statement
* Downgrade to 20.04
Until upstream PyTorch FBGEMM is fixed to compile with clang+14+ https://github.com/pytorch/pytorch/pull/82396
* Update buildAndTest.yml
run tests on only the binary config.
This commit fixes the shape calculation for:
1.) aten.mean.dim
2.) aten.var.dim
3.) aten.sum.dim_IntList op
Also, it fixes the lowering of `aten.mean.dim` and
`aten.sum.dim_IntList` for handling the cases of empty dim list.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
- Only offers support for statically sized index tensors when there is more than one
- Dynamic shape support remains for single indexing tensors
This commit adds verifiers to the ops `ToBuiltinTensorOp` and
`FromBuiltinTensorOp` that make sure that the input and output have
the same shape and data type.
This enables building Pytorch from source in the CI.
The build should mostly hit the ccache.
Release builds will follow once we have some runtime on the CI.
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings. This patch limits the dialects and
passes to only those that are used in torch-mlir.
Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
- Supports cases where the view op expands and collapses dims
simulataneously. This does not handle the case where it is neither
expanding nor collapsing (e.g. [2, 3] -> [3, 2])
- Additionally fixes a previous bug with adding 1-sized dims on both
sides of a tensor with aten.view
An upstream MLIR bug (that was recently fixed) caused the result to be
ignored for Region- and Block-visitor functions. Now that the bug is
fixed, we don't need an auxiliary boolean to track whether the visitor
function has succeeded.
This patch makes some rudimentary changes to torch-mlir's use of MLIR
Python bindings to work with the most recent LLVM code. We can perhaps
do better by being more selective in what we link against, instead of
using `MLIRPythonExtension.RegisterEverything`.
This commit adds the support for negative dim cases for `aten.cat`,
`aten.slice.Tensor` and `aten.slice_scatter` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
emitError is intended for error cases and not match failures of
patterns. notifyMatchFailure is intended where pattern reports reason
for not matching.
Op verification should also not happen inside patterns but as part of
verify/verification, but left ones that were obviously verification to
emitError inside patterns to keep this change small.
The biggest change here is to upgrade RefineTypes to the new sparse
dataflow framework.
Smaller changes:
- minor changes to type parsing
- suppress warnings in e2e tests
The original conversion pattern for `AtenBatchNormOp` required that
the input rank be greater than 2; however, the only
expectation in the conversion pattern and in Pytorch is that the input
rank is greater than 1, since the second dimension of the input must
match the size of the `weight`, `bias`, `runningMean`, and
`runningVar` inputs. This commit fixes the `inputRank` check.
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Remove all the libtorch downloads. If the user sets
-DTORCH_MLIR_USE_INSTALLED_PYTORCH=OFF then just build from src.
Doesn't change developer workflow since we still default to local
PyTorch versions.
TEST: Build and verify all tests (except one xfail quant) pass on linux
A previous patch added a new file
("VerifyConversionToValueSemantics.cpp") to the build, but it did not
add it to the list files known to bazel. This patch fixes the problem.
Found while trying to build torch-mlir on an AArch64 Linux VM, worth
a belts and braces to prevent such cases.
Change-Id: I89c6fccb62e666dbda0d9acac2d0ee43c2899e9b
This patch adds a new pass `torch-verify-conversion-to-value-semantics`,
which looks for non-value semantics tensors to catch such tensors early
during compilation.
This pass requires `torch-refine-public-return` pass to ensure that
return operations are updated to use value tensors, followed by the
canonicalize pass to remove any dead ops that may use or produce
non-value tensors.
lowering.
This commit addresses the remaining comments on lowering of
slice_scatter and select_scatter.
Signed-Off-By: Prateek Gupta <gprateek93@gmail.com>
Prior to this patch, the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` succeeded only if the tensor operand's type information
included the size of the requested dimension(s). We can extend the set
of optimizable cases by propagating types across operations whose result
type matches the input tensor type.
Specifically, this patch enables the canonicalizers for `AtenSizeOp` and
`AtenSizeIntOp` to see past `tensor_static_info_cast`,
`copy.to_vtensor`, and `copy.to_tensor` ops until it reaches the first
op whose result type contains size information for the requested
dimensions, with a maximum bound of 6 parent lookups to avoid indefinite
compilation times. All other encountered ops cause the canonicalizer to
give up.