Commit Graph

83 Commits (0d16a916567884b07639831a8166ad0805e1aaf9)

Author SHA1 Message Date
Suraj Sudhir 5ded7d096f
[tosa] Add tosa-to-standard before tosa-to-linalg pass (#524)
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-01-14 11:05:11 -08:00
Anup Gangwar abd61b4974 * Workaround for Issue 521, remove createTosaToStandard from Passes.cpp and
disable ElementwisePowModule_basic
* Update nll_loss_forward to align to the change in PyTorch

Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
2022-01-12 14:30:58 -06:00
Anup Gangwar d69d29b7a6 * [tosa] Support for AtenPowTensorScalarOp with constant Scalar as input
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
2022-01-11 22:55:54 -05:00
Vivek Khandelwal 35cf8d18f7 Add support for two return values
This commit adds support for two return values of type
memref f32 and i64.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-01-11 11:07:10 +05:30
Yi Zhang 732a76f45c Make broadcasting result shape more static
This involes the following 2 parts:
- Change refine type to propagate more static shape info.
- Get as much static shape info as possible when creating the result
tensor when converting to linalg.
2022-01-06 18:39:27 -05:00
Suraj Sudhir b4842d9863
[tosa] Implement squeeze.dim support (#511)
Templated variants for squeeze and squeeze.dim
2022-01-06 08:31:29 -08:00
Gaurav Shukla a83004c806 [TORCH][MLIR] Fold trivial cases of `aten.to.dtype` and `aten.view` op
- It folds `aten.to.dtype` when the input tensor type and result type
  are exactly same.
- It folds `aten.view` when the rank of both the input tensor type and
  result type is unity.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-12-24 13:32:34 +05:30
Nirvedh 3cb46cecef Added aten::t() Op 2021-12-22 10:57:10 -05:00
Suraj Sudhir 0cd95b5c68
[tosa] Support for Torch.squeeze (#487) 2021-12-15 21:40:29 -08:00
Daniel Garvey 396ab35c9d
Small fixes for slice edge cases (#476) 2021-12-15 15:54:41 -06:00
Anup Gangwar cce490d71d
* [tosa] Support for Rsqrt legalization (#480)
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2021-12-14 10:03:58 -08:00
Prashant Kumar c598e01529 Add support for passing & returning memref of bool types
Support for passing memref of bool types as a function argument
and return is added in ref-backend.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-12-09 00:23:38 +05:30
Prashant Kumar 5c7ce45c4e Update external llvm to 966b72098363d44adf2882b9c34
The external llvm is updated to point to
https://reviews.llvm.org/rG966b72098363d44adf2882b9c34fcdbe344ff913.
Some of the changes wrt. NamedAttr has been addressed.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-12-06 23:33:58 +05:30
Daniel Garvey a52aded0b9
Add lowering for slice and selectInt (#398) 2021-12-02 22:09:21 -06:00
Sean Silva 5475d02a0d Fix forward XPASS 2021-11-30 14:03:22 -08:00
Suraj Sudhir 1251c186b5 [tosa] Add TosaMakeBroadcastable pass to torch-to-tosa pipeline.
Fixes broken e2e test ElementwiseAddModule_basic

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-11-30 13:26:57 -08:00
nodlabs 67ce816fca lowered addcmul and addcdiv to linalg 2021-11-24 17:26:47 -05:00
Yi Zhang 0fe70994e5 Add support for multiple return values
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
2021-11-16 21:07:45 -05:00
Suraj Sudhir 628a21bb13
[mlir][tosa] Refactor conversions to use templates (#416)
- Remove use of conversion construction macros
- Add mul and div op conversions
- Add corresponding tests

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-11-11 16:15:58 -08:00
Suraj Sudhir 1019ddf5a0 [tosa] Add structure for eltwise ops
Add a bunch of op legalizations.

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-11-11 11:03:24 -08:00
Suraj Sudhir 7e4ef74774
[tosa] Add Torch.sigmoid fp32 to TOSA (#386)
* [tosa] Add Torch.sigmoid fp32 to TOSA

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2021-10-28 10:09:12 -07:00
Sean Silva 30df2ec71b Add min/max/clamp support.
Part of #380

Also
- BoolType is not considered as Scalar
- e2e framework fixes for nan handling
- `tu.rand(..., low=, high=)` support
- delete unused variable (fix warning)
- Add IouOfModule from #380 to e2e test suite (this is a common
  calculation in vision models)

 Your branch is ahead of 'origin/main' by 1 commit.
2021-10-27 13:29:21 -07:00
Sean Silva a6943ef90c Rename `tosa-to-linalg-on-tensors` to `tosa-to-linalg`
The pass name changed upstream.
2021-10-25 20:43:54 +00:00
Stella Laurenzo 47209539a8 Bump llvm-project to f1b922188ead5ca492c8d8edd47921b013a22ae0.
Includes a fix to use `add_mlir_public_c_api_library` for Torch-MLIR's CAPI library, which is now required (note: upstream sample has it the right way).

Disabled a TOSA test per discussion: https://github.com/llvm/torch-mlir/issues/379
2021-10-25 13:22:07 -07:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
Sean Silva f69630255a Add --external-config option to tools/torchscript_e2e_test.sh
This is a simple way for externals to plug their backends into the test
suite. They just implement the `TestConfig` class for their backend and
write a small script that exposes it.

I have a pending PR for iree-samples that successfully integrates this.
2021-10-04 11:48:16 -07:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Sean Silva 8b2c099914 Update llvm-project to 204d301bb1921431a853c0bfba32007c018df1d5
This brings in the fix for the obscure RefBackend bug we were hitting.
2021-09-28 17:38:10 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva 404bd74ddf Port the bulk of the remaining code to torch-mlir
This leaves no real code outside torch-mlir.

This also renames the "npcomp backend contract" to "linalg on tensors
backend contract" as the name of the abstraction layer that RefBackend
(IREE too) accepts.
2021-09-27 12:48:33 -07:00
Yi Zhang cd7053dfde Add runtime check 2021-09-24 12:01:36 -04:00
Sean Silva 1a0b953ea7 Eliminate almost all mentions of IREE.
A few remain in examples/docs that will be naturally be updated in due
time.

This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
2021-09-22 16:06:38 -07:00
Sean Silva 0eb767ea45 Remove frontends/pytorch directory.
It just contained the e2e testing framework. We now fold it into the
main project to reduce complexity.

- `frontends/pytorch/python/` -> `python/torch_support`
- `frontends/pytorch/e2e_testing -> e2e_testing`
- `frontends/pytorch/examples -> examples`
- `frontends/pytorch/test` -> `python/test`
- `torch_mlir_torchscript` python module -> `npcomp_torchscript`
- `torch_mlir_torchscript_e2e_test_configs` python module ->
  `npcomp_torchscript_e2e_test_configs`

This also changes the license of a handful of files from the
"pytorch-style" license to the regular LLVM/npcomp license. The only
people who committed to those files were myself and Yi.
2021-09-17 09:27:49 -07:00