Commit Graph

453 Commits (0d16a916567884b07639831a8166ad0805e1aaf9)

Author SHA1 Message Date
Jae Hoon (Antonio) Kim 0d16a91656 Add support for lift_fresh op (#1101) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim e37891b997 Default Device Ordinal API (#1079)
* Add default device ordinal API

* Fix reference backend
2022-07-30 09:40:02 -04:00
Antonio Kim de6c135dc3 Fix LTC autogen for CI with nightly PyTorch
- Update llvm-project pin to match main
2022-07-30 09:40:02 -04:00
Henry Tu cec74b8d37 Blacklist _convolution op (#1048)
* Blacklist _convolution op in LTC

* Removed duplicate Torch_AtenSelectScatterOp instance from autogen .td

* Removed duplicate Torch_AtenSliceScatterOp instance from autogen .td
2022-07-30 09:40:02 -04:00
Henry Tu 47bb38d180 Reference Lazy Backend (#1045)
* Changed Example MLIR backend to Reference MLIR backend

* Moved reference_ltc_backend into csrc

* Merged sys_utils.h

* Renamed reference_ltc_backend to reference_lazy_backend

* Addressed review comments

* Update docs with new library name

* Removed _REFERENCE_LAZY_BACKEND from .gitignore

* Added reference_lazy_backend to the TorchMLIRPythonModules dependency list

Fixed typo in `ltc_examples.md`

Missed instance where `ltc_backend` was used instead of `lazy_backend`.
2022-07-30 09:40:02 -04:00
Henry Tu f5acad8512 Prune xfail e2e LTC tests & fix bugs from functionalization pass (#1044)
- Pruned number of xfailed e2e LTC tests from 305 to 134
  - Reviewed every failure to ensure the error genuinely warrants an xfail
- Fixed bug where non-tensor outputs of LTC computation had `.to('cpu')` called, which caused a failure and inflated the xfail count
- Fixed bug with `HBC_basic` test where a constant tensor was created in its constructor without being declared as a buffer, which prevented the device from being updated when the parent `torch.nn.Module` got moved to the `lazy` device
  - Note that this test is still xfail'd due to some unsupported ops. Left a comment about some potential issues that may arise if it gets reenabled in the future
- Updated autogen `GeneratedTorchOps.td` to reflect the latest set of supported ops
- Renamed `aten.zero.functionalization` to `aten.zero` to reflect upstream PyTorch changes
2022-07-30 09:40:02 -04:00
Henry Tu 9de06f3ebd Update Torch MLIR readme 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim fb21c9e6cb Integrate Functionalization Pass (#998)
* Fix autogen build dir issue

* Got functionalization pass to compile

* Add slice/diagonal backwards functionalization

* Fix codegen invocation in CMakeLists.txt

* Add functionalization view ops

* Fix logsumexp out functionalization

* Fix ComputationPtr

* Blacklist new_empty op

* Add op comparison

* Remove unnecessary ops

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu 1510eae75d Upstream native_batch_norm and native_batch_norm_backward shape inference functions (#978)
* Removed compute_shape_native_batch_norm

* Removed compute_shape_native_batch_norm_backward
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim a62d60829c Refactor autogen (#925) 2022-07-30 09:40:02 -04:00
Henry Tu dfcc26556a Added e2e LTC tests (#916)
* Added e2e LTC Torch MLIR tests

* Fix seed for reproducability

* Check if computation is None before getting debug string

* Updated unit tests, and added numeric tests

* Print name of the model layer that fails numeric validation

* Run LTC e2e test with CI/CD

* Set seed in main function, instead of beginning of execution

* Add comment to specify number of digits of precision

* Fixed typo

* Remove tests for LTC example models

* Added LTC option to torchscript e2e

* Implement compile and run for LTC e2e test

* xfail all tests that use ops that aren't currently supported
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 8312fa535b Refactor Node Lowering (#914) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim d9aee0d7a7 E2E HuggingFace Bert using LTC Backend (#912)
* Update native function definitions

* Add ops to support bert lowering

- Add empty_strided and as_strided

- Restore zeros_like to op blacklist (Without this, tensors will be unintentionally created with a CPU device rather than lazy)

- Check for composite implicit ops and add device data IR

- Also fix codegen for functionalization

* Add autogen to CMakeList

* Remove PyTorch submodule

* Reduced BERT model size

* Print Mark Step status in Torch MLIR LTC debug string

* Apply fixes to work with latest upstream/main

- Pass importOptions into getMlirTypeFromTorchType during NodeImporter::importNode

  Without this, the tensor type created may have a mismatched type as ImportOptions may cause vtensor to be used instead of tensor

* Update shape inference functions

- Fixed compute_shape_native_batch_norm when mean and var are uninitialized

  Previously, the number of shapes returned would be <3 if either mean or val was didn't exist. Instead, we now initialize them with a vector matching the number of channels.

- Implemented compute_shape_mul

- Fixed bug in reshape shape inference error message

* Get MLIR backend more consistent with TS backend

- Remove LazyNativeFunctions::_unsafe_view from autogen

- Blacklist ops to make JIT graph more like output of TS backend

- Print graph when SSA value has mismatch of types and results

- Remove normalize_index from LazyShapeInference

- Fix seeds for LTC example models

* Update and clean up shape inference functions

- Prune shape inference functions

- Add shape inference function for GenerateSlice

- Add shape inference function for GenerateCopy

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu 0c35e607b3 Add static shape for scalar tensors (#833)
* Assume zero rank tensors are scalar

* Run RefineTypes pass on JIT Graph

* Rollback assumption that zero rank tensors are scalar

* Set numSizes to -1 for non-ranked tensors

* Rename RefineTypes to RefineTupleTypes
2022-07-30 09:40:02 -04:00
Henry Tu de5b380143 Bert example and relevant shape inference functions (#831) 2022-07-30 09:40:02 -04:00
Henry Tu 406d1e7538 Use JIT GraphExecutor for execution in example backend (#830)
* Update LazyShapeInference header

* Use JIT GraphExecutor for execution in example backend
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 1bde00c73d Fix LTC Decoupling (#815)
* Initial changes

* Fix up native functions

* Further fix decoupling

* Remove unnecessary ops

* Formatting and copyright banners:

* Add pytorch submodule
2022-07-30 09:40:02 -04:00
Henry Tu cca9fe126e Enable support for LTC Input/Output Mapping (#764)
* Save InputOutputAliases to TorchMlirComputation

* Implement GetResultShape for TorchMlirLoweringContext

* Use optional return type for GetResultShape

* Remove support for aten::detach

With this op enabled, tensors were being copied, which resulted in incorrect aliasing.

* Add newline before printing I/O alias mapping

* Changed printout to use "Input param" as label instead of "Input"

* Remote shape inference function for aten::detach

* Moved implementation of SetUpAlias to MlirLoweringContext

As part of this change, TorchMlirComputation has been moved to the end of mlir_lowering_context.h so that it can access some new structs in TorchMlirLoweringContext

* Use updated PyTorch API

* Remove GetResultShape

Complements this upstream PyTorch PR: pytorch/pytorch#75828

This PR adds support for mapping input and output tensors which alias each other. (e.g. maps input weight tensor in parameter to the same tensor in output after a training iteration)

MLIR: 
func @graph(%arg0: !torch.vtensor<[1,5],f32>, %arg1: !torch.vtensor<[1],si64>, ..., %arg6: !torch.vtensor<[10,5],f32>, %arg7: !torch.vtensor<[10],f32>, ...) {
  ...
  return %arg0, %arg1, %17, %23, ... : !torch.vtensor<[1,5],f32>, !torch.vtensor<[1],si64>, !torch.vtensor<[10,5],f32>, !torch.vtensor<[10],f32>, ...
}

Input/Output Alias Mapping: 
Output: 0 -> Input: 0
Output: 1 -> Input: 1
Output: 2 -> Input: 6
Output: 3 -> Input: 7
The aten::detach op has also been disabled in this PR to fix the issue of tensors not aliasing properly due to copying.
2022-07-30 09:40:02 -04:00
Antonio Kim 615ff1d31c Generate MLIR with shape information via LTC frontend (#742) 2022-07-30 09:40:02 -04:00
Henry Tu a605fe279c Add example Torch MLIR LTC Backend (#725) 2022-07-30 09:40:02 -04:00
Henry Tu 3e9b1cbd36 Added JIT to MLIR lowering (#724)
* Added JIT to MLIR lowering

Lowering to JIT is performed in a way similar to how it's done in the TS LTC backend. After a jit::Graph is constructed, it gets converted to a jit::Function, which is fed into the existing utility to generate an MlirModule in torch-mlir.

* Renamed `csrc/backend` to `csrc/base_lazy_backend`
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 65cf1465ef Fix Torch-MLIR LTC Backend based off latest PyTorch master (#723)
* Changes as a result of the LTC TS backend decoupling

* Fix bugs in BackendImpl and codegen

* Fix based on latest PyTorch master
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim c3b20e444c Got LTC working until compile (#689) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 58338f79a1 Torch-MLIR LTC Backend Lowering Codegen (#621)
* Codegen and build LTC lowering

* Add LazyShapeInference header
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 2f22e2ef40 Add initial LTC backend (#610)
* Add initial LTC backend skeleton

* Disable CI build and move TorchMLIRPyTorch.cmake
2022-07-30 09:40:02 -04:00
PhaneeshB 8b5631d4c5 [MLIR][TORCH] Add decomposition for aten.std.dim Op
Signed-Off By: Phaneesh Barwaria <phaneesh@nod-labs.com>
2022-07-29 23:52:54 +05:30
Vivek Khandelwal 9a1203c844 Fix CI failure due to upstream PyTorch change in aten.mean.dim op
Fixes https://github.com/llvm/torch-mlir/issues/1121

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-07-29 17:19:22 +05:30
Vivek Khandelwal c681c3497a [MLIR][TORCH} Fix empty dim cases for the .dim ops
This commit fixes the shape calculation for:
1.) aten.mean.dim
2.) aten.var.dim
3.) aten.sum.dim_IntList op

Also, it fixes the lowering of `aten.mean.dim` and
`aten.sum.dim_IntList` for handling the cases of empty dim list.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
2022-07-29 11:08:57 +05:30
Vivek Khandelwal d386b8f9e5 [MLIR][TORCH] Add decomposition for aten.var.correction op
This commit adds the decomposition for `aten.var.correction` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com
2022-07-29 11:08:57 +05:30
Vivek Khandelwal 7247c6a3a7 [MLIR][TORCH] Add E2E support for aten.ge.int op
This commit adds lowering of `aten.ge.int` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-29 11:08:57 +05:30
Quinn Dawkins 11a8901078
[MLIR][TORCH] Add support for multiple indexing tensors for aten.index.Tensor (#1097)
- Includes a canonicalizer for `aten.add.t`needed for successfully lowering the shape function
 - Only offers support for statically sized index tensors when there is more than one
 - Dynamic shape support remains for single indexing tensors
2022-07-28 19:00:02 -04:00
Quinn Dawkins 3c9addf19c Add e2e support for aten.expm1 2022-07-27 12:31:35 +05:30
Kevin Kiningham e8f327cc00 Add lowering to linalg for softplus and log1p
Follows existing conventions for unary operators.
2022-07-25 21:25:57 +05:30
powderluv f424930a28
Add option to expose custom PyTorch repo/branch (#1103) 2022-07-24 20:08:48 -07:00
powderluv 31fd812acf
Add linux and macOS source builds in CI (#1070)
This enables building Pytorch from source in the CI.
The build should mostly hit the ccache.
Release builds will follow once we have some runtime on the CI.
2022-07-21 14:16:03 -07:00
Ashay Rane 72dd04cdb3
Revert "python: trim registration and loading of dialects and passes" (#1093)
This reverts commit ad283c1043, since it's
causing nightly build failures for all platforms.
2022-07-21 09:35:42 -07:00
Ashay Rane ad283c1043
python: trim registration and loading of dialects and passes (#1084)
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings.  This patch limits the dialects and
passes to only those that are used in torch-mlir.

Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
2022-07-20 18:34:17 -07:00
Ziheng Jiang c61c99e887
[MHLO] Init MHLO integration. (#1083)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-07-20 16:18:16 -07:00
Quinn Dawkins 647e75e029
Allow expanding and collapsing in aten::view (#1082)
- Supports cases where the view op expands and collapses dims
simulataneously. This does not handle the case where it is neither
expanding nor collapsing (e.g. [2, 3] -> [3, 2])
 - Additionally fixes a previous bug with adding 1-sized dims on both
sides of a tensor with aten.view
2022-07-20 17:35:51 -04:00
Kevin Kiningham 21f905afbe
Emit underscore version of aten.sqrt (#1072) 2022-07-18 23:57:47 -07:00
Quinn Dawkins c73a39e40a Add support for index.Tensor on dimensions other than the first
This patch still only supports a single indexing tensor.
2022-07-19 11:36:52 +05:30
Ashay Rane 7f08169380
bump llvm tag to 3580daa (#1078)
This patch makes some rudimentary changes to torch-mlir's use of MLIR
Python bindings to work with the most recent LLVM code.  We can perhaps
do better by being more selective in what we link against, instead of
using `MLIRPythonExtension.RegisterEverything`.
2022-07-18 16:49:03 -07:00
Vivek Khandelwal df0b1e77a4 [MLIR][TORCH] Add negative dim support for aten.cat and aten.slice op
This commit adds the support for negative dim cases for `aten.cat`,
`aten.slice.Tensor` and `aten.slice_scatter` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-18 14:01:33 +05:30
Sean Silva 795479a88d Remove HasValueSemantics from `is` ops. 2022-07-15 17:03:17 -07:00
Maksim Levental d70bb68c9e
Add named exception TorchMlirCompilerError. (#1064) 2022-07-15 16:32:36 -05:00
Ramiro Leal-Cavazos afdaa60dd4
Fix typo in `inputRank` check of `AtenBatchNormOp` (#1046)
The original conversion pattern for `AtenBatchNormOp` required that
the input rank be greater than 2; however, the only
expectation in the conversion pattern and in Pytorch is that the input
rank is greater than 1, since the second dimension of the input must
match the size of the `weight`, `bias`, `runningMean`, and
`runningVar` inputs. This commit fixes the `inputRank` check.
2022-07-15 09:35:59 -07:00
Vivek Khandelwal 3589134d31 [MLIR][TORCH] Add decomposition for aten.var.dim op
This commit adds the decomposition for `aten.var.dim` op.
This commit also make changes in the decomposition for `aten.var` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-07-15 09:53:42 +05:30
powderluv 479a8a8963
Remove libtorch downloads (#1058)
Remove all the libtorch downloads. If the user sets
-DTORCH_MLIR_USE_INSTALLED_PYTORCH=OFF then just build from src.

Doesn't change developer workflow since we still default to local
PyTorch versions.

TEST: Build and verify all tests (except one xfail quant) pass on linux
2022-07-14 17:16:51 -07:00
Maksim Levental 1bb990afc7
Speed up libtorch build. (#1031) 2022-07-11 20:46:49 -05:00
Ramiro Leal-Cavazos 11148e60d6
Undo shape lib changes + update function signature of sum + zero (#1035)
This commit does three things:
  1. Reverts some of the shape lib changes merged in
  https://github.com/llvm/torch-mlir/pull/844
  2. Updates the signature of `aten.sum_dim_IntList` that was recently
  updated in
  23bdb570cf
  3. Replaces `aten.zero.functional` with `aten.zero`, updated in 960758b0b7
2022-07-11 10:56:12 -07:00