Commit Graph

5 Commits (0d4445eaf9e270207b3670aa3eb4316e489c59d4)

Author SHA1 Message Date
Sean Silva ccc858f531 torch_mlir.compile: Fix API footgun
use_tracing=True was behaving unexpectedly because the handling of
single arguments was happening after the torch.jit.trace call.

This also fixes the check to specifically test for a torch.Tensor or
TensorPlaceholder so that both lists and tuples would be correctly
handled.
2022-06-05 18:10:07 -07:00
Sean Silva 2af53ce434 torch_mlir.compile: Add OutputType.RAW
This can help with development and reporting bugs.
2022-05-19 03:41:43 -07:00
Sean Silva ef9e4c95f2 torch_mlir.compile: add support for dynamic sizes.
We do this by inroducing a TensorPlaceholder class, which can be used to
specify dynamic sizes. Internally, we canonicalize all example inputs
to TensorPlaceholder's.

This commit also adds some basic testing, which was missing before.
2022-05-17 07:02:32 -07:00
Sean Silva ab5ad7af09 Add tracing suport to `torch_mlir.compile`.
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.

Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.

This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
2022-05-03 09:08:40 -07:00
Sean Silva 075464fa74 Add a new `torch_mlir.compile` method.
This makes it much easier to convert models and hides all the
ClassAnnotator complexity.

This also adds a new example `torchscript_resnet18_all_output_types.py`
which shows the ResNet18 IR for all output types.

Also,

- This moves `run_pipeline_with_repro_report` to
  `torch_mlir.compiler_utils`.
2022-04-20 10:06:01 -07:00