Commit Graph

4 Commits (0d4445eaf9e270207b3670aa3eb4316e489c59d4)

Author SHA1 Message Date
Maksim Levental cec5aeedb0
add ci tests (#754) 2022-05-25 14:59:59 -05:00
Ashay Rane 9208bf0eb6
llvm: bump tag to e1318078 (#781)
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
2022-04-26 12:27:51 -07:00
Maksim Levental 3e999beaea
Small bug fixes in eager mode (#691) 2022-03-28 13:31:07 -05:00
max fe8ac57e6d This PR implements an eager mode backend for PyTorch through the torch-mlir framework. This is accomplished by overriding the `__torch_dispatch__` class method on wrapper subclass `TorchMLIRTensor(torch.Tensor)`.
Effectively, this mode works by compiling op by op as the NN is eagerly executed by PyTorch. Entailed in that compilation is building a representation of the op that can be `torch.jit.script`ed, importing using `ModuleBuilder`, and then executing (e.g., with `RefBackendLinalgOnTensorsBackend`). This mode includes a fallback to conventional PyTorch if anything in the torch-mlir compilation process fails (e.g., unsupported op).

Currently, all e2e tests pass execpt for two that involve an upstream PyTorch bug (https://github.com/pytorch/pytorch/issues/74400).

High priority next steps:

1. A compile cache in order to speed up reruns of the same NN.
2. Integration with IREE (though not in this repo).
3. Integration with `torch.distributed`.
2022-03-22 14:42:57 -07:00