Fix the pad tensor rearrangement such that we change the representation
from [x1_begin, x2_begin, ..., x1_end, x2_end,...] to [xn_begin, xn_end,
...., x2_begin, x2_end, x1_begin, x1_end] where x1, x2 .. xn are the
dimensions of the pads tensor argument.
---------
Co-authored-by: zjgarvey <zjgarvey@gmail.com>
Co-authored-by: zjgarvey <47986913+zjgarvey@users.noreply.github.com>
Due to the custom operation parser, the print and parser were expecting
two different forms.
One having the dictionary before the value and the other after.
Following the format of the other constants ops, the constant.int will
follow the `value attr-dict` format. Updated the parser accordingly.
This bump triggered an upstream assert. Includes a WAR for #3506.
Also includes several things I needed to do to repro:
* When TORCH_MLIR_TEST_CONCURRENCY=1, test runs will be printed.
* Added TORCH_MLIR_TEST_VERBOSE=1 handling to enable verbose mode
(useful on CI).
---------
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
This adds support for a few ops:
- torch.linalg_det
- torch._linalg_det (if the LU and pivot returns are unused)
- onnx.Det
An scf loop is used, since the row reduction algorithm applied here has
some loop-carried dependencies.
The current support being added here is very basic, and only works if no
permutations are required during row reduction, and assumes the matrices
are non-singular.
This adds a torchvision op to torch-mlir and a path from onnx.DeformConv
to torchvision.deform_conv2d.
I'm not implementing the torch->linalg lowering for the torchvision op
yet, but posting this PR to get feedback on some of the choices being
made here and to flesh out the onnx frontend a bit.
This adds an onnx->torch conversion for onnx.RoiAlign into
torchvision.roi_align or torchvision.roi_pool, and adds those two
torchvision ops to torch-mlir.
Add a new op with shape/dtypes and decompose into
`fake_quantize_per_tensor_affine` when the second result is unused.
The xfail_set change is on ONNX because torch cannot export this op to
ONNX.
1. truncates zero-points to i32
2. modifies the default accumulator type for i8 from i64 to i32.
3. now uses the input dtype to infer accumulator dtype.
This implements the Onnx.NegativeLogLikelihoodLoss op using the
signature provided
[here](https://onnx.ai/onnx/operators/onnx__NegativeLogLikelihoodLoss.html)
by replacing it with a `NLLLossForward` op.
Additionally, I included a helper function `get_loss_reduction_enum` to
convert from a string `reduction` parameter to the corresponding
intended integer value since this is an operation that will be reused
for any loss function module. This differs from `get_reduction_enum` in
`TorchUpstream.cpp` which handles the `reduce` parameter from
`scatter_reduce` type operations.
There is currently no int16 quantization support in torch. This patch
adds a new mlir type to correspond to the missing "torch.qint16" type,
and enables lowering of quantization-related onnx ops using int16 types.
In follow-up patches, custom quantization logic for ops like
aten.matmul/aten.mm/aten.convolution may need to be revisited to allow
support for qint16. The passes in FuseQuantizedOps.cpp may also need
slight modifications.
This addresses 7 of the model failures I'm seeing in the test suite. See
[Shark-Turbine issue
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566).
Need the op ```linalg.conv_2d_ngchw_gfchw_q``` to be added upstream
before merging this. See [llvm-project PR #92136
](https://github.com/llvm/llvm-project/pull/92136).
A small additional expansion to operand quantization is included in this
patch to address a model failure that occurs when unblocking the
quantized group convolutions in one of these onnx models.
Updates:
- some unsupported modes are now going to report a match failure for
unsupported coordinate transformation modes.
- fixes a bug that was introduced in the last patch for resize (my
bad...)
- uses actual x and y coordinates for computing weights in bilinear
interpolation (rather than eps modified values)
- slightly simplifies the bilinear interpolation payload for readability
and performance
- passes coordinate transformation mode information from an onnx.Resize
op to the mode string for the aten._interpolate op. This allows us to
perform custom logic in the torch->linalg lowering to support
onnx.Resize options without losing the default behaviors of the
interpolate op.
This PR fixes the bugs for `Torch::AtenOneHotOp` by:
1) Using `Torch::kUnknownSize` as the default value for `numClasses` in
the pattern matching stage in `DecomposeAtenOneHotOp`
2) Adding `AtenIntScalarOp` to the patterns in `TorchToArith`
3) Handling both `int` and `float` types for `off` and `on` values in
`TorchOnnxToTorch` conversion
It also includes:
1) A new test in `TorchToArith/basic.mlir`, for `torch.aten.Int.Scalar`,
and
2) A new test in `decompose-complex-ops.mlir`, for `torch.aten.one_hot`
**Dependencies**
This PR is dependent on #3334.
I am trying to eliminate 'getWithLeastStaticInformation' in
DecomposeAtenTriuOp. Could you provide me with some suggestions?
@qingyunqu @zjgarvey
See issue https://github.com/llvm/torch-mlir/issues/3312
Discord Thread:
https://discord.com/channels/636084430946959380/1238330633328005243
## Context:
[This](https://github.com/llvm/torch-mlir/blob/main/python/torch_mlir/fx.py#L61)
was updated to support e2e tests for the TorchDynamo frontend in
Torch-MLIR, where we run FX decompositions and import the FX IR to
generate Torch dialect, followed by
`torch-function-to-torch-backend-pipeline`, skipping only the shape/type
refinement for now. However, we should be able to skip many of the torch
simplification passes, as depicted in the [frontend
roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/images/roadmap_frontend.png).
Based on IREE's TorchDynamo
[pipeline](https://github.com/iree-org/iree/blob/main/compiler/plugins/input/Torch/InputConversion/Passes.cpp#L29),
the only two passes we seem to require are: `ReduceOpVariantsPass` and
`DecomposeComplexOpsPass`. This is inline with our findings as well
based on initial exploration.
This PR creates a dedicated frontend simplification pipeline for
TorchDynamo / FX Importer which calls only `ReduceOpVariantsPass` and
`DecomposeComplexOpsPass`. We rely on the e2e fx_importer tests to
ensure we're not regressing by removing many of the passes that were
historically needed for TorchScript.
One notable change here is that we do not call the
`LowerToBackendContractPass` anymore, which used to call
`TorchSimplificationPipeline` iteratively until VerifyBackendContract
was clean. Some of this was required for the shape/type refinement to
converge, which seems a non-issue for Dynamo frontend. Do we anticipate
this (the iterative invocation of TorchSimplificationPipeline followed
by VerifyBackendContract) to be worth retaining in the Dynamo frontend
pipeline? If so, I can make those changes, PLMK.
In constant folding progress, a new constant op will be created
according to the origin op's result type.
See the code in TorchDialect.cpp.
```cpp
Operation *TorchDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
if (auto integerType = dyn_cast<Torch::IntType>(type))
return builder.create<Torch::ConstantIntOp>(loc, cast<IntegerAttr>(value));
if (auto floatType = dyn_cast<Torch::FloatType>(type))
return builder.create<Torch::ConstantFloatOp>(loc, cast<FloatAttr>(value));
if (auto numberType = dyn_cast<Torch::NumberType>(type)) {
if (auto floatValue = dyn_cast<mlir::FloatAttr>(value)) {
return builder.create<Torch::ConstantNumberOp>(loc, floatValue);
} else if (auto intValue = dyn_cast<mlir::IntegerAttr>(value)) {
return builder.create<Torch::ConstantNumberOp>(loc, intValue);
}
}
if (isa<Torch::BoolType>(type)) {
return builder.create<Torch::ConstantBoolOp>(loc, cast<IntegerAttr>(value));
}
if (isa<Torch::NoneType>(type))
return builder.create<ConstantNoneOp>(loc);
if (auto stringAttr = dyn_cast<StringAttr>(value))
return builder.create<ConstantStrOp>(loc, stringAttr);
if (auto elementsAttr = dyn_cast<ElementsAttr>(value)) {
// Only !torch.vtensor can be constant folded. !torch.tensor has
// non-trivial aliasing semantics which prevent deduplicating it.
assert(isa<ValueTensorType>(type) && "should be a vtensor type!");
return builder.create<ValueTensorLiteralOp>(loc, elementsAttr);
}
return nullptr;
}
```
So when the op has a tensor result type, it must be "ValueTensorType"
due to the **assert** statement. However, many fold methods in
TorchOps.cpp only have a judgment of "BaseTensorType".
After running the model tests in SHARK-TestSuite, I noticed a few model
failures due to half-fusion.
Notably, RDN_pytorch_vaiq_int8 had a depth=5 convolution chain with
multiple AtenViewOp's.
This change enables more customization with operand quantization, and
generalizes the patterns QuantizeOperands and QuantizeTransposeOperands
to QuantizeOperandsPastCommutingOps.
This allows for passing quantization through operations which are
functionally unaffected by quantization, such as view-like ops. The
purpose of this change is to address a myriad of quantization issues
seen in quantized onnx models that have some reshape-like operations
sandwiched in between a dequant and something like a matmul (whose other
operand is immediately quantizable).