- aten::relu_, aten::max_pool2d, aten::adaptive_avg_pool2d, aten::batch_norm, aten::conv2d
No aten-to-linalg conversion for the latter ones, as they are fairly
substantial. At this point, I'm trying to get shape inference and stuff
working for them and the IR cleaned up.
Interestingly, TorchScript has its own op (`torch::jit::Operator`)
registry separate from the dispatcher (it is a superset of the
dispatcher).
This is where the "prim" ops and some "aten" ops (that should probably
be renamed to "prim") live. In particular, `aten::__is__` is in that
latter category of "aten but really prim". This registry is also the
source of truth for what the TorchScript interpreter calls into when it
executes.
The bulk of the "not part of the dispatcher" ops live in
09feb5f579/torch/csrc/jit/runtime/register_prim_ops.cpp (L82)
And the registry itself lives in:
09feb5f579/torch/csrc/jit/runtime/operator.cpp (L196)
This fold further reduces the IR of ResNet by folding away some
more not-taken branches. These not-taken branches in ResNet require
first-class handling of the list type which we don't yet have on any
backend.
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.
We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.
As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
Note that unlike aten.matmul which has dynamic behavior
depending on the argument ranks (can do matrix-matrix, matrix-vector,
batch matmul, etc.), aten.mm is just a vanilla matrix
multiply, which can be lowered precisely to tcf.matmul.
The "test" is really just an example that I stared at while getting my
feet wet with this. We probably want something that actually tests this
as part of `ninja check-npcomp`.
* convolution, convolution_backward, _log_softmax, _log_softmax_backward_data, nll_loss_forward, nll_loss_backward, nll_loss2d_forward, nll_loss2d_backward, copy_
* Extends the recognition logic and metadata for handling inplace transformations, optional tensors, ints, lists and dropped args.
* The kernel_calls generated by test_conv_nllloss_grads.py now convert to ATen.
* The result *almost* comes out as a pure tensor program with the exception of the copy_ op, which I will do some followup work to deal with.
* More progress on #97
* Deletes prior code generator from previous attempt (moved some of it into this one).
* Renames old generated tablegen source to "Legacy".
* Generates ODS and import rules for most binary and unary arithmetic ops.
* Removes old generated ops and integration tests that were testing details of the prior setup.
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.