Commit Graph

41 Commits (28762699b3d797f43e1533450122db7993cf70d5)

Author SHA1 Message Date
Sean Silva 0b7dbf5f81 Initial import of iree-dialects.
We plan on using these dialects "natively" as part of the npcomp backend
contract, and provide feedback to evolve them in IREE. Roughly speaking,
we can consider these dialects as "what's missing from upstream that we
think belongs in the general abstraction layer that npcomp's backend
contract targets".

We integrate them by just copying the relevant directory from the IREE
source tree (with `build_tools/update_iree_dialects.sh`). This avoids
adding IREE as a submodule, which is way too heavyweight (including
IREE itself, another copy of LLVM, TensorFlow, ...) and would give the
false impression of a source dependency rather than the lightweight (and
eventually versioned/stabilized) IR-level compatibility that we strive
for.
2021-08-11 13:00:04 -07:00
Yi Zhang bfc3ee35c6 Import Machine Translation model to MLIR.
This includes the following changes to import MT model into MLIR. There
are still a lot of work to for actual compilation.
- Add `torch.dict<>`, `torch.any`, `torch.number` types
- Add `torch.prim.DictConstruct` op
- Fix `torch.prim.TupleConstruct` op assembly format to include resulting types
2021-08-10 15:22:06 -04:00
Sean Silva 453e29ea05 Add E2E support for tests with heavy dependencies (heavydep tests).
The tests use the same (pure-Python) test framework as the
normal torchscript_e2e_test.sh, but the tests are added in
`build_tools/torchscript_e2e_heavydep_tests` instead of
`frontends/pytorch/e2e_testing/torchscript`. Any needed dependencies can
easily be configured in generate_serialized_tests.sh.

We add an initial machine translation model with a complex set of
dependencies to seed the curriculum there. I verified that this model
gets to the point of MLIR import (it fails there with a segfault due to
not being able to import the "Any" type).

This required moving a few files from the `torch_mlir` Python module
into multiple modules to isolate the code that depends on our C++
extensions (which now live in `torch_mlir` and
`torch_mlir_torchscript_e2e_test_configs`) from the pure Python code
(which now lives in `torch_mlir_torchscript`). This is an entirely
mechanical change, and lots of imports needed to be updated.

The dependency graph is:
```
       torch_mlir_torchscript_e2e_test_configs
                  /              |
                 /               |
                /                |
               V                 V
torch_mlir_torchscript       torch_mlir
```

The `torch_mlir_torchscript_e2e_test_configs` are then dependency-injected
into the `torch_mlir_torchscript` modules to successfully assemble a
working test harness (the code was already structured this way, but this
new file organization allows the isolation from C++ code to actually
happen).  This isolation is critical to allowing the serialized programs
to be transported across PyTorch versions and for the test harness to be
used seamlessly to generate the heavydep tests.

Also:
- Extend `_Tracer` class to support nested property (submodule) accesses.

Recommended review order:
- "user-level" docs in README.md
- code in `build_tools/torchscript_e2e_heavydep_tests`.
- changes in `torch_mlir_torchscript/e2e_test/framework.py`
- misc mechanical changes.
2021-08-03 14:09:56 -07:00
Stella Laurenzo 445472c51e Build packages for npcomp-torch.
* Adds a minimal setup.py for frontends/pytorch
* Makes npcomp-core export its headers and libraries
* Adds a script to build packages.
* Adds CI step to package and smoke test.
* Will need some more tweaks and coordination prior to deploying (version locking etc).
2021-07-29 19:58:59 -07:00
Yi Zhang 6fbf94f0b2 Update readme and scripts for setting the new PYTHONPATH
Add scripts for generating .env and update instructions in README.
2021-07-28 15:06:40 -04:00
Stella Laurenzo 2dbab50444
Rework the python build to a static assembly of MLIR+NPCOMP (#251)
* Adapt to python build system updates.

* Bump llvm to 310c9496d80961188e8d8f8ad306cdf44bd7541f (includes python build updates)
* Adds refback C-API.
* Re-layers all python builds.
* Rework CI.
2021-07-27 16:10:10 -07:00
Sean Silva 0b6516c7cc Bump llvm-project to cbd0054b9eb17ec48f0702e3828209646c8f5ebd
Changes:
- MLIR_BINDINGS_PYTHON_ENABLED -> MLIR_ENABLE_BINDINGS_PYTHON
- canonicalizer constant insertion order
- EDSC is gone now
2021-06-10 16:26:45 -07:00
Sean Silva 2efda323ff Significantly restructure torch/aten import design.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.

This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).

Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
  imported as `torch.somens.someunqualname.someoverloadname` (skip the
  last dotted part if the overload name is empty), OR, if we don't have
  such an op registered, it is imported as
  `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
  - The addition of the "overload name" is a critical element here, as
    the `(ns,unqual,overload)` triple is unique, which solves a lot of
    problems we were having.
  - This involves having separate MLIR ops for the `trailing_` and
    `.out` variants and all the different overloads. This seemed
    necessary, because the set of overloads is so wild and varied and
    unstructured. The previous design was leaning into some underlying
    structure that just isn't there -- the default situation is
    the "random overload that we want to manage on the MLIR side",
    rather than that being an exception. E.g.  `aten::ne` (not-equal)
    has 21 overloads, only 4 of which are c10 dispatcher ops see
    [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
    and the "out" variant is really called `.Tensor_out` instead of
    `.out` as it frequently is for other ops.
  - Rationale for all being in `torch` namespace: the set of operators
    are so varied and unstructured that "dialect per namespace"
    doesn't result in anything resembling the typical MLIR dialect
    boundary expectations. We could maybe draw the boundary at
    dispatcher ops vs non-dispatcher ops, but that doesn't seem to
    really result in very much useful structure at this point in time.
  - Note: within the torch operator registry, we effectively have a
    mini-basicpy subdialect (already type-resolved), which is reasonably
    structured.
  - The existing Torch op interfaces are also removed -- now that we
    track the overload name, we can losslessly find the original
    operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
  `ReduceOpVariantsPass` that keys off certain traits (and perhaps
  eventually interfaces) to reduce variants of ops to a smaller set,
  ideally operating on immutable tensors and using surrounding ops to
  model the mutability/aliasing aspects.
  - Note: `torch.ns.unqual.overload` ops allow both immutable and
    mutable tensors (unlike the previous hard distinction in the common
    case). This is a premonition for a future change that will introduce a
    bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
  "ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
  It should look somewhat familiar, but the benefit of hindsight has
  allowed a lot of simplifications.

The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).

Recommended review order:
- Start at some of the new import IR, e.g. in
  `frontends/pytorch/test/node_import/prim.py`,
  `frontends/pytorch/test/acap_export/test_export_add3.py`, and other
  tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
  and associated generated files:
  - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
  - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
  traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
  `frontends/pytorch/csrc/builder`. Probably most interesting is the new
  code in `torch_to_mlir_utils.cpp` that has the logic to create the
  `torch.operator` ops or `torch.ns.unqual.overload` ops.

This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
2021-05-19 13:37:39 -07:00
Sean Silva c424c24ed8 Bump llvm-project to c68d2895a1f4019b387c69d1e5eec31b0eb5e7b0
- dialect registration
- StringAttr::get: order of context arg
- math dialect
- LogicalResult nodiscard
- error message for invalid broadcast
2021-02-22 12:23:24 -08:00
powderluv cecf1fbba5
Add a CI builder with latest pytorch CPU nightly. Also add AArch64 to the build (#166) 2021-02-21 13:36:06 -08:00
Stella Laurenzo 72f785c4b2 Update install_mlir.sh to take extra configure flags. 2021-01-22 16:30:23 -08:00
Sean Silva 2549d00d8c Specify Python3_EXECUTABLE explicitly.
Otherwise `MLIR_BINDINGS_PYTHON_ENABLED=ON` won't work.
2021-01-20 18:07:04 -08:00
Stella Laurenzo 52240e0569 Disable RTTI in the LLVM build.
* It was only required with the old python APIs.
2021-01-08 10:56:57 -08:00
Sean Silva d8261a06d5 Fix scripts to handle the case of nonexistent directory.
Also, touch up the docs.
2021-01-05 14:17:08 -08:00
powderluv d35724ad0d
Use portable realpath. Its unavailable in !GNU (#145)
realpath is a GNUUtils package that is not available on recent OSX

TEST=Build on OSX systems without GNUutils + zsh

Change-Id: I573855b93a08e1746e0bb214be28b4a3ea8264ca
2020-12-29 13:03:15 -08:00
Sean Silva 45ca371129 cmake_configure.sh: Add mlir native modules to PYTHONPATH
Also, update README.md to use the canonical .env file written by
`cmake_configure.sh`.
2020-11-20 17:29:57 -08:00
Stella Laurenzo a7ff87a922 Sever C++ level depend on IREE and rebase on exe and python interface.
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
2020-11-16 21:32:56 -08:00
Stella Laurenzo 36d750ca89 Default to -DLLVM_LINK_LLVM_DYLIB=ON.
* We're building libLLVM.so anyway. Saves a lot of time/space to link tools against it.
* MLIR tools do not yet respect this (but it doesn't seem to hurt).
2020-11-09 14:13:42 -08:00
Stella Laurenzo 6c702b149f Add a number of kernels and new patterns.
* convolution, convolution_backward, _log_softmax, _log_softmax_backward_data, nll_loss_forward, nll_loss_backward, nll_loss2d_forward, nll_loss2d_backward, copy_
* Extends the recognition logic and metadata for handling inplace transformations, optional tensors, ints, lists and dropped args.
* The kernel_calls generated by test_conv_nllloss_grads.py now convert to ATen.
* The result *almost* comes out as a pure tensor program with the exception of the copy_ op, which I will do some followup work to deal with.
* More progress on #97
2020-11-04 14:36:59 -08:00
Stella Laurenzo 59b7c559f4 Tweak build flags for efficiency and document building without a container.
* Enables -gsplit-dwarf for both LLVM and NPCOMP, reducing the occurrence of the ~GB scale binaries.
* CMake shared linking seems incompatible with this, so shared objects are still "too big" but there are few of them.
* Reduces disk thrash on clean/install of everything.
2020-11-03 13:46:46 -08:00
Stella Laurenzo c08935a418 Rewrite ATen ODS code generator to be based on new op registry and new signature recognition system.
* Deletes prior code generator from previous attempt (moved some of it into this one).
* Renames old generated tablegen source to "Legacy".
* Generates ODS and import rules for most binary and unary arithmetic ops.
* Removes old generated ops and integration tests that were testing details of the prior setup.
2020-10-28 10:37:37 -07:00
Stella Laurenzo 9e52f6235b More progress on PyTorch acap device capture.
* Now gets far enough to capture batch_norm.
* Has some issues still with in-place ops.
* Can materialize constants.
* Includes an upgrade to PyTorch nightly, which has important bug fixes for fallback and boxed kernel dispatch.
* Fixes #78, #79, #80.
* Will do more testing in a follow-up once further bugs are fixed that facilitate getting at the other features.
2020-10-15 21:43:21 -07:00
Sean Silva 87b6bc305a [build_tools] Fix install_mlir.sh to look for Python3
Otherwise, on my machine MLIR somehow gets configured with Python 2,
which is not supported.

The `probe_python` stuff is copied from cmake_configure.sh
2020-10-15 20:15:53 -07:00
Stella Laurenzo af4edb63ae Start reworking towards a shared library build.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.

Sizes with dynamic linking (stripped, release, asserts enabled):
  libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
  libMLIR.so: 31M
  _npcomp.so: 1.6M (python extension)
  _torch_mlir.so: 670K (python extension)
  npcomp-capi-ir-test: 6.3K
  npcomp-opt: 351K
  npcomp-run-mlir: 461K
  mnist-playground: 530K

Still more can be done to normalize and optimize but this gets us structurally to the starting point.
2020-10-09 16:02:58 -07:00
Sean Silva d6b05c507a Fix up the docker script / instructions after attempting to use it. 2020-10-09 10:27:06 -07:00
Stella Laurenzo 51d51241b4 Add scripts/documentation for VSCode setup with a docker dev image.
* Forks a subset of my shell functions into docker_shell_funcs.sh, specifically needed to create docker images that run as yourself.
* Extends the readme with the three command bootstrap to get a dev container running.
* Step by step instructions for configuring VSCode for Intellisense in either npcomp or LLVM.
* Changes LLVM config options to enable tests. This setup is now suitable for upstream changes as well without rebuilding.
2020-10-07 21:27:20 -07:00
Stella Laurenzo 3ccc2214a7 Set PyTorch captured function return type.
* Resolves various TODOs that required an LLVM change/bump.
* Bumps LLVM to 4aa217160e5f06a96c6effc4950c3b402374de58
2020-10-07 10:14:34 -07:00
Stella Laurenzo b5f010284f Add boilerplate to do device capture (pytorch 1.6).
* Uses the new dispatcher API.
* Just prints to the console for the moment when an op is captured.
* Executes the op through the existing implementation.
2020-09-28 10:30:54 -07:00
Stella Laurenzo 678989a321
Update docker, instructions and some fixes for the pytorch 1.3 build. (#45)
* Includes pybind11 directly (for some reason using the pytorch helper header for this depends on a source file not in the image).
* Installs nnpack into the image.
* Installs new-clang and LLD and configures environment to use it (otherwise, link time is terrible).
* Fixes a gcc compile error (in the off chance you build with default gcc compiler).
* Tests are failing based on some dialect registration stuff that must not have been factored correctly. Will followup with a fix.
2020-09-16 21:57:46 -07:00
Stella Laurenzo 4c37aed841 Update build instructions to use the submodule for llvm.
* Previous instructions were referring to the option to use an external llvm-project checkout with a stale version hash.
2020-08-28 16:20:55 -07:00
Stella Laurenzo a2a36aa8f3
Add mlir-hlo as a submodule and add a script to find versions. (#20)
* I expect that mlir-hlo will be a non-optional dependency of the project, so adding as a sub-module.
* IREE is an optional dependency and I'm keeping this as an out-of-tree checkout for the moment.
* The script will compute the join across both iree and mlir-hlo to find a common LLVM version.
* The script needs some more work (like a flag that says to update the version, etc). Likely needs more testing through an integrate or two.
2020-08-13 16:42:05 -07:00
Stella Laurenzo 4731cbd94b Update install_mlir.sh script for new submodule path. 2020-08-01 14:54:20 -07:00
Sean Silva 76a782d4fd Correct LLVM hash
It must have gotten mangled by copypaste.
2020-07-08 20:19:30 -07:00
Sean Silva b4f0cea8fa Rework e2e flow to use new "npcomprt"
This ~totally reworks the existing "runtime" stuff to be more
principled and usable, such as from Python. It's still not fully
production-quality, mainly in the department of memory management (e.g.
it currently leaks memory; we need to figure out "who frees memrefs" +
the analysis and transformation needed to do that (maybe use upstream
buffer allocation pass?)).

The user API is in include/npcomp/runtime/UserAPI.h, though
include/npcomp/JITRuntime/JITModule.h is a friendlier wrapper.

The stuff under {include,lib}/runtime is totally firewalled from the
compiler and tiny (<6kB, though no attention has gone into optimizing
that size). For example, we don't link in libSupport into the runtime,
instead having our own bare bones replacements for basics like ArrayRef
(the JITRuntime helps with bridging that gap, since it *can* depend on
all common LLVM utilities).

The overall features of npcomprt is that it exposes a module that
with multiple function entry points. Each function has arguments and
results that are tensor-valued, and npcomprt::Tensor is the runtime type
that is used to interact with that (and a npcomprt::Ref<T>
reference-counting wrapper is provided to wrap npcomprt::Tensor in the
common case).

From an implementation perspective, an npcomprt module at the
LLVM/object/binary level exposes a single module descriptor struct that
has pointers to other metadata (currently just a list of function
metadata descriptors). All interactions with the npcomp runtime are
keyed off of that module descriptor, including function lookups and
dispatching. This is done to dodge platform ABI issues and also allow
enough reflection to e.g. verify provided arguments.

Most of the compiler-side work here was in LowerToNpcomprtABI and
LowerToLLVM.

Also,
- Rename npcomp_rt/NpcompRt to npcomprt/Npcomprt; it was getting
annoying to type the underscores/caps.
- misc improvements to bash_helpers.sh
2020-07-08 19:36:19 -07:00
Sean Silva d85b7e7d60 Bump llvm revision to a084b94f1198df600fff0632ad54fe6121e2393 2020-07-08 19:35:23 -07:00
Stella Laurenzo e1839a0d6b Bump llvm and iree versions.
* Gets us passed the upstream changes that enable type interfaces.
* Adds the ARM backend due to an implicit IREE dependency sneaking in for that (https://github.com/google/iree/issues/2401)
* Adds explicit TypeStorage to type base classes per upstream change.
2020-07-02 11:24:05 -07:00
Stella Laurenzo 270608c781 Fix misspelled -gdwarf-2. 2020-07-02 10:46:46 -07:00
Stella Laurenzo 918aa487e9 Adjust configure script to probe more robustly. 2020-07-02 10:45:49 -07:00
Stella Laurenzo aeb422b030 Some fixes to get npcomp building and passing on windows.
There is more that can be done here, but this gets it minimally working.
2020-07-01 21:28:04 -07:00
Stella Laurenzo 0962a31ca8 Bump llvm and IREE version to revisions circa 2020/7/29.
* Also fixes a dependency issue that was causing a build race.
2020-06-30 11:22:30 -07:00
Stella Laurenzo 12d8459d73 Rework README, add docs, and move some scripts to better locations accordingly. 2020-06-20 11:56:13 -07:00