- Make consistent with MLIR Core
- Use `//` or `///` comments.
- Use `bool` type for booleans
- No duplicated comments in .cpp files
- Split types into separate files `{Basicpy,Numpy,Torch}Types.h`
- Add dialect prefix consistently to C API symbols. We have lots of
similarly named types (e.g. "list" type in basicpy and torch).
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.
We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.
As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
* Adds at::Tensor -> MlirValue tracking.
* Adds conversions for tensor and scalar types to MLIR types.
* Adds npcomp C APIs for constructing custom types.
* Reworks pybind include so as to get Torch pybind helpers (needed to pass at::Tensor type from Python->C++).
* Uses the MLIR-C API since that will save us a lot of grief down the road (i.e. will give PyTorch and libMLIR/libNPCOMP the ability to skew version-wise).
* Quite a few TODOs and not yet populating the function in any way.