This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.
I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`
The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.
Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.
Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
out, which should be resolved in a subsequent change.
- Make consistent with MLIR Core
- Use `//` or `///` comments.
- Use `bool` type for booleans
- No duplicated comments in .cpp files
- Split types into separate files `{Basicpy,Numpy,Torch}Types.h`
- Add dialect prefix consistently to C API symbols. We have lots of
similarly named types (e.g. "list" type in basicpy and torch).
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.
We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.
As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
* Adds at::Tensor -> MlirValue tracking.
* Adds conversions for tensor and scalar types to MLIR types.
* Adds npcomp C APIs for constructing custom types.
* Reworks pybind include so as to get Torch pybind helpers (needed to pass at::Tensor type from Python->C++).
* Uses the MLIR-C API since that will save us a lot of grief down the road (i.e. will give PyTorch and libMLIR/libNPCOMP the ability to skew version-wise).
* Quite a few TODOs and not yet populating the function in any way.