Commit Graph

193 Commits (2a0c56741834f5bb433d6d7c90494dd10b96bd0b)

Author SHA1 Message Date
Sean Silva e7721fb784 Fix error message.
RefineTypes doesn't handle shape refinement anymore.
2022-04-07 14:46:44 -07:00
Sean Silva c17c0a6ba2 Fix for 0-size dim inferred incorrectly.
The issue was in the canonicalizer for torch.aten.ge.int -- in cases
where the operands were swapped, it would miscompile. This issue is
fixed and folding support generalized to `torch.aten.size.int < 0` as
well.

Fixes #716
2022-03-30 16:36:15 -07:00
Gaurav Shukla 969785d1b6 [LINALG] Add E2E support for `aten.where.[Scalar|ScalarSelf|ScalarOther]` ops
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-30 20:36:48 +05:30
Vivek Khandelwal 2597c481f6 [MLIR][TORCH] Add E2E support for aten.new_empty op
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.

This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-30 13:21:01 +05:30
Sean Silva 140babd952 Add minimal support for Union types.
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287

Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
  along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
  that derefines to a UnionType (this also fixes #664).

There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
2022-03-29 17:45:48 -07:00
Liam Fitzpatrick f2269ced80
Improve list index normalization SimplifyShapeCalculations. (#710)
The reified code to compute the shape of torch.aten.constant_pad_nd
uses negative indices when setting list elements. This was not
converted to a positive offset in one place in SimplifyShapeCalculations
which prevented computation of the static shape.
2022-03-29 22:21:47 +02:00
Maksim Levental 25ba51b2af
This commit decomposes aten._reshape_alias op into aten.view op. (#690) 2022-03-28 23:54:28 -05:00
Sean Silva 776426ea4e [SimplifyShapeCalculations] Fix AbstractlyInterpretListOpsWithinABlock
The logic in the rewriting phase had a bug in case of a read-only op
coming before mutation ops. The logic would use the op itself as the
"latest literal", but that is not correct, because later on we replace
the op itself with the *final* "latest literal", assuming that all uses
of the op have been rewritten -- that was working in general, except for
any read-only ops at the beginning.

Big thanks to @ljfitz for the tiny reproducer!

Fixes #704
2022-03-28 13:18:35 -07:00
Gaurav Shukla 02b6d04eb4 [LINALG] Add E2E support for `aten.zero_` op
This commit adds decomposition of `aten.zero_` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-25 12:46:50 +05:30
Gaurav Shukla 7c3ba25238 [LINALG] Add decomposition of `aten.dropout` op
- This commit adds decomposition of `aten.dropout` op. It also covers the
  training mode of the same op.
- It also adds lowering of `aten.sub.float` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-22 13:14:49 +05:30
Vivek Khandelwal 5b9bdfaf3f [MLIR][TORCH] Add E2E support for aten._to_copy op
This commit decomposes `aten._to_copy` op into
`valsem.aten.copy` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vivek Khandelwal 13383b03b8 [MLIR][TORCH] Add value tensor variant to aten::copy_ op
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenCopyOp`.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vivek Khandelwal 4c0cd5c23d [MLIR][TORCH] Add E2E support for aten.expand_as op
This commit decomposes `aten.expand_as` op into `aten.broadcast_to` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 12:47:39 +05:30
Vigilans 63fb1e5aad Bump LLVM at 8361c5da30588d3d4a48eae648f53be1feb5cfad 2022-03-18 13:16:14 -04:00
Ramiro Leal-Cavazos 218b4875d5
Make conditions for type refinement of static cast less strict (#680)
This commit adds support for type refinement when
`torch.tensor_static_info_cast`s are involved, even when there are
users of the casted tensor that don't allow type refinements.

Originally the canonicalization pattern for
`torch.tensor_static_info_cast` would check if all the users of the
casted tensor allowed type refinements before making any changes. This
means that if at least one of the users did not allow type
refinements, the pattern would fail. This becomes an issue when doing
shape calculations because the calculations need the shape information
of each input tensor to be available before the calculation can be
simplified.
2022-03-18 09:10:12 -07:00
Vivek Khandelwal 8da7d90611 [MLIR][TORCH] Add E2E support for aten.index_put op
This commit decomposes `aten.index_put` op into
`valsem.aten.index_put_impl` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-16 22:02:02 +05:30
Vivek Khandelwal 3d95c3d6c9 [MLIR][TORCH] Add value tensor variant to aten::_index_put_impl_
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.

This commit also updates the `torch.bincount` op test cases.
2022-03-16 22:02:02 +05:30
Ramiro Leal-Cavazos 0bcc6d1075
Add maximize-value-semantics support for multiple non-value tensor inputs (#659)
This commit adds value semantics support for ops such as
`aten.view_as` and `aten.expand_as` that take two non-value 
tensors as input.
2022-03-15 18:13:45 -07:00
Sean Silva 92da4988f0 Improve "pseudo" op terminology.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:

- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`

This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
2022-03-15 17:57:52 -07:00
Sean Silva 84a9693006 Elide `!torch.` prefix in nested dialect types.
This leads to much more succinct types in many cases:

```
!torch.list<!torch.int>
!torch.list<int>

!torch.tuple<!torch.list<!torch.int>, !torch.list<!torch.int>>
!torch.tuple<list<int>, list<int>>

!torch.optional<!torch.list<!torch.int>>
!torch.optional<list<int>>

!torch.list<list<list<tensor>>>
!torch.list<!torch.list<!torch.list<!torch.tensor>>>
```

I would like to take this further and allow omitting the `!torch.`
prefix in all cases, but that's harder -- for example, we currently use
`FuncOp` for functions, and so I don't think we can customize the
printing there. It seems like it will be a longer road to getting that
level of customization.
2022-03-15 17:24:08 -07:00
Sean Silva a5fe0cf063 Introduce new shape library design.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.

This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.

Recommended review order:

1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
   `canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.

Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).

Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
2022-03-15 12:41:58 -07:00
Ramiro Leal-Cavazos 51e267aa37
Combine maximize-value-semantics rewrite patterns into one pattern (#642)
This commit replaces the two rewrite patterns of
maximize-value-semantics with a single pattern that captures the
behavior of both as well as other edge cases previously not
supported. The new pattern works by first performing alias analysis on
a subgraph to see if pattern is applicable, then rewriting all
non-value tensors to value tensors in a single go.
2022-03-10 09:36:52 -08:00
Gaurav Shukla e57d3f9774 [LINALG] Fix `aten.bernoulli` op lowering
- This commit adds E2E support for `aten.rand_like` and
  `aten.bernoulli_.Tensor` ops.
- The `aten.bernoulli(x)` was implemented as:
  `aten.bernoulli(x) = rand_like(x) < 0.5`, assuming 0.5 as default
  probability, whereas according to the pytorch documentation:
  https://pytorch.org/docs/stable/generated/torch.bernoulli.html#torch.bernoulli
  the input x in `aten.bernoulli(x)` is itself a tensor containing
  probabilities to be used for drawing the binary random number.
- So this commit fixes the `aten.bernoulli(x)` implementation as:
  `aten.bernoulli(x) = rand_like(x) < x`.
- It also fixes the case where the input to `aten.bernoulli_.float` is
  an integer tensor. In this case the input must be casted to float type
  before passing it as operand to `aten.rand_like` op.
  `aten.bernoulli_.float(x, p) = rand_like(float(x)) < p`.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-05 09:38:22 +05:30
Vivek Khandelwal af551bd9cd [MLIR][TORCH] Add E2E support for aten.full_like op
This commit decomposes `aten.full_like` op into `aten.empty_like`
and `aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Vivek Khandelwal d61ae92eee [MLIR][TORCH] Add E2E support for aten.full op
This commit decomposes `aten.full` op into `aten.empty` and
`aten.fill` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-04 21:58:23 +05:30
Ramiro Leal-Cavazos 9ce62473f9
Add static type information support to `aten.bmm` (#636)
This commit adds static type information support to `aten.bmm`. This
is needed for the forward pass of Bert training.
2022-03-03 13:01:17 -08:00
Yi Zhang 1d285f0153 Add aten.hardtanh e2e support. 2022-03-02 12:28:06 -05:00
Prashant Kumar 819f29316f Decompose aten.silu op
Decomposition of aten.silu.op is added as silu(x) = x * sigmoid(x).
2022-03-01 23:24:19 +05:30
Vivek Khandelwal ddd45d6068 [MLIR][TORCH] Add E2E support for aten.new_zeros, aten.new_ones op
This commit adds lowering of `aten.new_zeros` and `aten.new_ones` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-01 22:09:47 +05:30
Prashant Kumar 7c637eebc3 [LINALG] Decompose aten_hardswish op.
`aten.hardswish` op is decomposed into (x/6) * Relu6(x+3).
2022-02-25 21:59:27 +05:30
Gaurav Shukla 056cd2078d Revert "[LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`"
This reverts commit 442ff4605c.
2022-02-25 15:46:55 +05:30
Ramiro Leal-Cavazos ba29d4f250
Add operand type invariant to `torch.overwrite.tensor.contents` (#606)
This commit adds the invariant to the op `torch.overwrite.tensor.contents` that
both of its operands have the same shape and size. In order to
maintain the invariant, special handling of this op is added to the
`RefineTypes` pass.
2022-02-22 11:41:46 -08:00
Ramiro Leal-Cavazos ea371a9bf2
Fix handling of view-like ops in `maximize-value-semantics` (#611)
This commit adds handling to the `maximize-value-semantics` pass for
the case where a view-like op depends on a tensor that has been
overwritten by a value tensor. The approach for removing the
dependency is to change the input to the view-like op to be a copy of
the value tensor that is being used to overwrite.

This commit also removes `AtenFill_ScalarOp` and
`AtenBernoulli_FloatOp` from the list of view-like ops, since these
ops now have a corresponding op with value semantics into which they
get converted in the `reduce-op-variants` pass.
2022-02-18 10:19:07 -08:00
Ramiro Leal-Cavazos 2823277f7c
Add static type information support to `aten.mm` (#602)
This commit adds static type information support to `aten.mm`. This is
needed for the forward pass of Bert training.
2022-02-18 09:56:48 -08:00
Nirvedh f8cb32faf0 LLVM bump
Major changes: opTrait changed to Trait, selectOp moved to arith dialect
assertOp moved to cf dialect
2022-02-16 15:28:13 -05:00
Gaurav Shukla 442ff4605c [LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`
- This commit decomposes the `aten.batch_norm` op into the
  `aten.native_batch_norm` op, instead of lowering it to the
  `linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
  to make sure that the shape of the weight, bias, running_mean, and
  running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
  all the modules that are dependent on the `aten.native_batch_norm` op
  will fail and therefore they should be removed from the TOSA `passing`
  set.
- It also moves `checkNotNone` to utility.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 23:41:38 +05:30
Prashant Kumar 8b79b5f48f Modify aten._log_softmax op decomposition for numerical stability.
`aten.log_softmax` is decomposed to be more numerically stable.
2022-02-16 12:26:17 +05:30
Gaurav Shukla cd21dda867 [LINALG] Add E2E support for `aten.Hardsigmoid` op
This commit adds lowering of `aten.Hardsigmoid` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 02:35:18 +05:30
Ramiro Leal-Cavazos 00a6e9c1bb
[LINALG] Add value tensor variant to `fill_.Scalar` (#600)
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.

Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
2022-02-15 11:58:03 -08:00
Ramiro Leal-Cavazos 413e6000d2
[LINALG] Add value tensor variant to `bernoulli_.float` (#597)
This commit adds the op `PseudoAtenBernoulliFloatOp` that represents
`AtenBernoulli_FloatOp` without the underscore. This is needed to make
sure that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value semantics
correctly.
2022-02-14 18:58:48 -08:00
Gaurav Shukla f00d1686c8 [LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
- This commit adds lowering of `aten.Bool.Tensor` and
  `aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
  input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
  `aten.Float.Tensor` op, it folds to the scalar number.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-14 23:09:20 +05:30
Yi Zhang 9e7b6cab08 Add folder for aten.gt/lt.float 2022-02-14 12:34:01 -05:00
Yi Zhang ce4d6d1f83 Remove hacky aten.select.int lowering code 2022-02-11 18:14:58 -05:00
Prashant Kumar 258660deb6 Add aten.bernoulli decomposition.
aten.bernoulli is decomposed to aten.gtTensor(aten.uniform(x), x).
2022-02-11 00:35:33 +05:30
Prashant Kumar 102c497c4c Add decomposition of _log_softmax op.
Decompose _log_softmax into log(softmax(x)).
2022-02-10 23:17:26 +05:30
Prateek Gupta 318946a650 [TORCH][MLIR] Add E2E support for `aten._unsafe_view` op.
This commit adds decomposition of `aten._unsafe_view` op into
`aten.view` op.

Signed-Off-By: Prateek Gupta<prateek@nod-labs.com>
2022-02-10 22:28:58 +05:30
Prashant Kumar 68acc8696e Modify softmax decomposition to be more numerically stable.
The softmax decomposition is modified according to https://github.com/pytorch/functorch/blob/main/functorch/_src/decompositions.pytorch
to account for numerical stability. Also, modified aten.argmax lowering
to handle negative dimension.
2022-02-03 21:20:36 +05:30
Suraj Sudhir 1b505cbac5
RefineTypes fixes for TOSA backend (#557)
Handles Linear, Adaptive_AvgPool2D and FlattenUsintInts
Adds ResNet18 static model for TOSA

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2022-02-01 14:08:54 -08:00
Yi Zhang 0cb216a1ad [Torch][Linalg] Add basic support for RNG
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
2022-01-31 18:56:42 -05:00
Yi Zhang 5d9a15263a [TORCH] Add aten.std e2e support 2022-01-31 15:17:49 -05:00