Commit Graph

13 Commits (2dbab50444e9c30eabbd3355a47545c0650fd100)

Author SHA1 Message Date
Yi Zhang 89d4931324 Linalg lowering for aten.conv2d and aten.AdaptiveAvgPool2d
1. Add m_TorchConstantIntList
2. Lowering for aten.conv2d
3. Lowering aten.AdaptiveAvgPool2d
2021-07-09 15:04:29 -07:00
Sean Silva d5108b9dc1 Add IREE support in TorchScript e2e tests.
- Add support for "expected failures" in test reporting. The new error
  reports look like
  [this](https://gist.github.com/silvasean/6ffd95e1d55302b699673da201da210d).
  - We will now be able to put these tests into CI, since the harness
    understand which tests are expected to pass and fail.
- Refactor RefBackendTestConfig to NpcompBackendTestConfig which
  supports both RefBackend and IREE.
- Add instructions for installing IREE dependencies (both from packages
  and for local builds of IREE)
- Add `tools/torchscript_e2e_test.sh` for invoking the e2e test
  harness (this makes invoking a bit easier, as it doesn't rely on a
  loose Python invocation).
2021-06-30 16:19:25 -07:00
Yi Zhang 6dddb4d4fe Add torch.aten.batch_norm Linalg lowering support
1. Added a simplified version of torch.aten.batch_norm which only handles
inference and assumes the weight, bias, running_mean, running_var are not
None.

2. Removed the primitive types check in verifyLinalgCompatibleTypes check
since now we have proper type converter to handle torch types conversion.
The checks for RankedTensorType is kept because the type converter
doesn't guarantee the converted builtin tensor type is ranked. A
separate verification pass to verify the invariant expected by later
passes will need to be added before those can be removed as well.
2021-06-22 16:45:21 -07:00
Sean Silva 370e3270ab Introduce `!torch.tensor` / `!torch.vtensor` types.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes.  The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:

```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```

This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".

At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.

Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
  creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
  touch -- we need to sort out the situation with !basicpy.BoolType
  there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
  semantics. We currently require this, as our backend contract does not
  currently allow us to even model the non-value-semantic case. Before,
  the value-semantic assumption was randomly injected in the middle of
  the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
  RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
  `!torch.vtensor` to `tensor` and use the dialect conversion infra.
  The overall conversion pipeline is set up following the best practices
  of the "Type Conversions the Not-So-Hard Way" talk. This required
  introducing `torch-func-builtin-tensorize` and
  `torch-finalizing-builtin-tensorize` passes analogous to the upstream
  bufferization passes with the corresponding names (mostly just
  copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
  lowering to std later in the pipeline, so we are gradually lessening
  our reliance on random std constant folding before we get to that
  point.

Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
  - Frontend changes.
  - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-06-10 10:56:48 -07:00
Sean Silva b7b7fd4959 Rewrite error reporting of e2e tests.
This now gives [much nicer output](https://gist.github.com/silvasean/f048e0f37b04542dae6469b86802bb3e).
Embarrassingly, we previously couldn't even report failures for two
different tests, and weren't able to report on compilation failures
(besides just crashing).
2021-05-20 11:28:20 -07:00
Sean Silva 0c89296075 Shore up error reporting for TorchScript import.
This code was not exception safe -- it would leave an operation
unattached to anything, which breaks MLIR's C++ data structure
invariants (e.g. it cannot safely erase ops).

Also, print out both the exception and any diagnostics, since they can
both contain useful information.
2021-05-20 11:28:20 -07:00
Sean Silva 3a890aa26c Miscellaneous changes while trying to work on ResNet18
- Move frontend lowering pipelines to c++ (this helps with reproducing
  failures in npcomp-opt)
- Add debugging printouts when compilation fails on RefBackendTestConfig

The experience now when a test fails during MLIR lowering is now like this:
```
NPCOMP TorchScript Object Graph IR -> NPCOMP Backend IR lowering failed with the following diagnostics:
failed to legalize operation 'torch.global_slot'
Module does not conform to npcomp's backend contract. See dialect conversion legality information above.

Error can be reproduced with:
$ npcomp-opt -torchscript-to-npcomp-backend-pipeline /tmp/ResNet18Module.mlir
```

And when TorchScript->MLIR import fails it looks like this:
```
PyTorch TorchScript module -> NPCOMP Object Graph IR import failed with the following diagnostics:
unhandled prim operation: %18 : int = prim::min(%17) # /usr/local/google/home/silvasean/.local/lib/python3.9/site-packages/torch/nn/functional.py:4532:4
```

Also,
- Add `--filter=<regex>` to e2e test harness to filter tests.
- Add a few prim ops that were needed to import ResNet18
- Fix torch.prim.Loop.condition assemblyFormat (it previously would not
  round-trip in the case of no loop-carried variables)
2021-04-27 11:51:11 -07:00
Sean Silva 8f96901943 Add vision models (resnet18 to start).
Also,
- improve error reporting of e2e framework.
2021-04-27 11:51:11 -07:00
Sean Silva 39d50ccf0d Add end-to-end testing framework for TorchScript.
The E2E tests can be run with
```
npcpy frontends/pytorch/e2e_testing/torchscript/main.py
```

This commit adds a couple items supporting that end, including new sugar
for annotations (no more raw use of ClassAnnotator!).

Recommended review order:

1. `frontends/pytorch/e2e_testing/torchscript/main.py` for
   the harness + `basic.py` in that directory for examples of tests.
2. Annotation sugar in `frontends/pytorch/python/torch_mlir/torchscript/annotations.py`
   and unittest in `frontends/pytorch/test/ivalue_import/annotations/sugar.py`
3. Global test registry / sugar in
   `frontends/pytorch/python/torch_mlir/torchscript/e2e_test/registry.py`
4. `frontends/pytorch/python/torch_mlir/torchscript/e2e_test/framework.py`
   for the meat of the testing framework (start at `run_tests`), and
   looking at the backend configs in
   `frontends/pytorch/python/torch_mlir/torchscript/e2e_test/configs`
   for examples of backends. This is likely the bulk of review time.
5. Unit tests of the framework logic in `frontends/pytorch/test/torchscript_e2e_test`

There's TODO's scattered throughout, but this seems functional enough to
start pulling stuff into and kicking the tires. A few missing pieces:

1. Marking test expected pass/fail per backend.
2. Figuring out how best to fit this into dev workflows.
3. IREE TestConfig.

Also, forgive this Python newbie... Any advice on Python code structure
/ library design would be much appreciated.
2021-04-20 12:00:35 -07:00
Sean Silva a375ccf9da Add ability to annotate TorchScript classes.
The first use case is to annotate certain program constructs as either
exported or private. In this commit we plumb it down to
GlobalizeObjectGraph which makes use of this information.

Recommended review order:
1. class_annotator.h/.cpp + `test/module_import/annotations/*`
    - New abstractions to communicate with Python code and annotate.
2. IR changes in TorchOps.td
    - Adding "private" attribute to various things.
3. ivalue_import.cpp changes
    - Module + ClassAnnotator = annotated IR
4. GlobalizeObjectGraph.cpp + tests
    - use new "private" attributes to create "private" IR.
    - also, tweak some of the op deleting mechanics, which was triggering
      some memory errors / assertions

With this, we can run the classifier through and inline it as follows:
```
frontends/pytorch/utils/pt_util.py --import --exported-name forward ~/tmp/classifier.pt \
| npcomp-opt -torch-globalize-object-graph -inline
```
IR: https://gist.github.com/silvasean/32dcad9f6270557f412094a77cecdd69
2021-02-25 11:28:34 -08:00
Stella Laurenzo 8d98dd4551 Support optional args/returns and other odds and ends.
* None's out Device? args.
* Emits bool tensors if needed.
* Adds some stderr tracing to better see what is going on.
* Test case that exercises NLLLoss.
* This test case emits something for backward calculations but there are some issues still to be worked out, so that part is left out of the test case.
* Progress on #97
2020-10-30 14:50:28 -07:00
Stella Laurenzo 30cfc6499f Create public API for torch_mlir python code.
* Adds a trampoline/loader 'torch_mlir' module.
* Plumbs through the MLIR python Context and Module creation, interoping with the MLIR Python API (resolves TODO on creating with own context and accessing the module being built).
* Inter-module Python API interop is still a bit rough but workable via the capsule mechanism. Can be evolved later.
* Exports the frontends/pytorch python sources to the project python/ build directory.
* Requires D89294 to land.
2020-10-13 16:36:49 -07:00
Stella Laurenzo 0d91885965
Add initial python bindings for c10 dispatcher internals. (#55)
* Exposes the op registry via a get_registered_ops method.
* Moves the aten dialect generation scripts in prep for integrating them with this facility.
2020-09-24 16:26:29 -07:00