Commit Graph

73 Commits (2ea2bc39489cd849e2d606b48be324da2e62f7e7)

Author SHA1 Message Date
Vivek Khandelwal 2ea2bc3948
[ONNX] Add OnnxToTorch Lowering for GroupNormalization op (#3458)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-14 16:18:53 +00:00
Umang Yadav 04c6479350
[ONNX] Add onnx parser for LpPool operator (#3449)
Similar to https://github.com/llvm/torch-mlir/pull/3435

Solves https://github.com/nod-ai/SHARK-Turbine/issues/728
2024-06-14 21:41:18 +05:30
Phaneesh Barwaria 919b599ebe
onnx.MaxPool add atenMaxPool1d lowering support (#3452)
fixes #3422
2024-06-13 15:37:11 +05:30
Surya Jasper de7f058a0e
[MLIR][ONNX] Add OnnxToTorch support for MaxRoiPool Op (#3395)
This PR adds OnnxToTorch support for MaxRoiPool op
2024-06-13 10:46:14 +05:30
Umang Yadav 9b76a2e3eb
[ONNX] add onnx lowering for global lp pool operator (#3435)
Solves https://github.com/nod-ai/SHARK-Turbine/issues/727

Uses AvgPool to implement GlobalLpPool similar to this
https://github.com/onnx/onnx/blob/main/onnx/reference/ops/op_lp_pool.py

cc: @vivekkhandelwal1
2024-06-13 10:37:08 +05:30
zjgarvey de28c8540b
[ONNX] add int16 quantization support (#3446)
There is currently no int16 quantization support in torch. This patch
adds a new mlir type to correspond to the missing "torch.qint16" type,
and enables lowering of quantization-related onnx ops using int16 types.

In follow-up patches, custom quantization logic for ops like
aten.matmul/aten.mm/aten.convolution may need to be revisited to allow
support for qint16. The passes in FuseQuantizedOps.cpp may also need
slight modifications.
2024-06-12 10:37:22 +05:30
Vivek Khandelwal 35dd8c52cd
[ONNX] Add OnnxToTorch Lowering for MaxUnpool op (#3413)
This commit also adds the Torch declaration for aten.max_unpool2d and
aten.max_unpool3d op. The TorchToLinalg lowering for the same will be
added in a follow-up commit.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-04 21:09:53 +05:30
zjgarvey 8952377603
[Onnx] reduce MatMul OpsetVersion to 1 (#3403)
Resolves #3324
2024-05-31 22:17:56 +05:30
Rob Suderman afca88a058
[NFC] Change to *cast instead of .*cast variants (#3405)
Member casts have been deprecated. Changing over a bunch of the member
cast calls to the global templated variants to remove deprecation
warnings.
2024-05-30 23:45:13 -07:00
Vivek Khandelwal d7b8f00d01
[ONNX] Add OnnxToTorch Lowering for LpNormalization op (#3397)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-30 23:05:26 +05:30
zjgarvey 27169dcda9
Replace some depreciated uses of cast (#3343)
Contributing towards #3299
2024-05-23 09:01:47 -07:00
Angel Zhang 2e194e13d6
[Torch] Fix bugs for `Torch::AtenOneHotOp` (#3350)
This PR fixes the bugs for `Torch::AtenOneHotOp` by:

1) Using `Torch::kUnknownSize` as the default value for `numClasses` in
   the pattern matching stage in `DecomposeAtenOneHotOp`
2) Adding `AtenIntScalarOp` to the patterns in `TorchToArith`
3) Handling both `int` and `float` types for `off` and `on` values in
`TorchOnnxToTorch` conversion

It also includes:

1) A new test in `TorchToArith/basic.mlir`, for `torch.aten.Int.Scalar`,
and
2) A new test in `decompose-complex-ops.mlir`, for `torch.aten.one_hot`

**Dependencies**

This PR is dependent on #3334.
2024-05-22 17:19:08 +00:00
Angel Zhang 52be4bdc18
[ONNX] Fix bugs for the `onnx.OneHot` operator (#3334)
This commit fixes the bugs for the `onnx.OneHot` operator by:

1) Converting negative indices to non-negative indices
2) Handling both `int` and `float` types for `off` and `on` values
3) Using the correct result type

It also includes a new unit test.
2024-05-22 08:32:00 -04:00
Vivek Khandelwal b870729efe
[torch] Fix `onnx.MaxPool` lowering (#3133)
This commit fixes the onnx.MaxPool op lowering which was lacking the
indices result support.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-21 21:05:32 +05:30
lialan 99511cef82
Implement `onnx.Hardmax` lowering (#3342)
Co-authored-by: Ubuntu <xunli@wsno1.judsoscro3wupi0qm4bjlj5m3b.bx.internal.cloudapp.net>
Co-authored-by: Hasekawa-Takumi <bewater.private476@passmail.net>
2024-05-20 20:56:24 +05:30
NeverRaR 26b78285bf
[MLIR][ONNX] Add OnnxToTorch support for GlobalMaxPool Op (#3232)
https://github.com/nod-ai/SHARK-Turbine/issues/658

---------

Co-authored-by: root <root@i32b01216.sqa.eu95>
2024-05-14 15:55:39 +05:30
Andreas Falkenberg adafd51823
[onnx] Gridsampler addition of nearest mode (#3320)
Added nearest neighbor selection for onnx.Gridsampler
2024-05-10 11:42:10 -07:00
Angel Zhang 261074f594
[ONNX] Handle one-input case for Min ONNX operator (#3326)
This commit handles the one-input case for the "Min" ONNX operator. A
new unit test has also been added.
2024-05-10 22:04:03 +05:30
Angel Zhang 7c289d9522
[ONNX] Handle one-input case for `onnx.Max` operator (#3325)
This commit handles the one-input case for the "Max" ONNX operator. A
new unit test has also been added.
2024-05-10 08:58:46 -07:00
Xida Ren (Cedar) 33eef15e42
Support onnx.If (#2825)
This is probably a decent PR for learning about blocks and regions.

If you're here to learn about that, consider also looking at
lib/Conversion/TorchToSCF/TorchToSCF.cpp

While this doesn't include an e2e test, it is tested downstream in
https://github.com/nod-ai/SHARK-TestSuite/blob/main/e2eshark/onnx/operators/If/model.py

---------

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-30 18:36:40 +00:00
Stella Laurenzo 5d4b803914 [NFC reformat] Run pre-commit on all files and format misc.
This is part 1 of ~3, formatting all miscellaneous text files and CPP files matched by a first run of pre-commit. These tend to be low change-traffic and are likely not disruptive.

Subsequent patches will format Python files and remaining CPP files.
2024-04-27 14:08:09 -07:00
penguin_wwy 6679728c56
Fix deprecated uses of cast/dyn_cast/dyn_cast_or_null/isa (#3243)
Like #3130, gradually replace the deprecated code

https://github.com/llvm/mlir-www/blob/main/website/content/deprecation/_index.md#deprecated
2024-04-27 14:00:56 -07:00
Rob Suderman 9a12a093a6
[onnx] Support `onnx.OneHot` lowering to `torch` (#3196)
[onnx] Support `onnx.OneHot` lowering to `torch`

Leverage the `aten.onehot` implementation along with `aten.transpose`
and `aten.where.scalar`.
2024-04-26 12:08:15 -07:00
Andreas Falkenberg cd33d8b011
[onnx] Update DefaultDomainGtoP.cpp gridsampler (#3228)
Gridsampler
In onnx the interpolation mode is called 'linear' whereas in pytorch it
is called 'bilinear'. This led to the problem that everything other than
'bilinear' was rejected. It needed to be changed to linear.
2024-04-25 18:07:05 -07:00
Phaneesh Barwaria f77d88390a
[onnx] handle dynamic padSize tensor in onnx.Pad (#3214)
- Fix pad size to data_rank for dynamic paddingSize Tensor.
- This fix is in accordance with [input
specification](https://onnx.ai/onnx/operators/onnx__Pad.html#inputs) for
onnx.Pad
- Impl will need to be updated for dynamic padSize when support for
`axes` is added.
2024-04-24 11:31:37 +08:00
Rob Suderman b01245c0e8
[onnx] Fix `onnx.Not` for non-bool inputs (#3187)
Need to perform a bool cast to support `onnx.Not` on non-bool inputs.
2024-04-19 11:32:24 -07:00
Andreas Falkenberg b66eabd492
[onnx][torch][linalg] Implementing align-corner modes for gridsampler (#3171)
Align corner modes which select what the corners mean. 
Either the center of the corner points or the edges of the edge points.

---------

Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
2024-04-17 13:38:19 -07:00
zjgarvey 5e564b5864
Adds Some Quantization Support for AtenMatmulOp (#3147)
1. onnx.MatMulInteger now converts to aten.matmul instead of aten.mm
2. aten.matmul, for ranks >=2, now allows quantized inputs and will
lower to linalg::quantized_matmul or linalg::quantized_batch_matmul.
3. added AtenMatmulOp to the FuseQuantizeOps rewrite patters
QuantizeOperands, QuantizeTransposedOperands, and QuantizeAccumulator
4. added several tests, including some to test AtenMmOp with varying
quantization signed-ness.
5. a quantized matmul mat-vec test is added to verify the failure to
lower to linalg; cleaned of out-of-date code related to common
torch-mlir lowering xfails.
6. in debugging a real model with quantized matmuls, I found a bug on
the scalarize-shapes pass which resulted from the aten.full op folder
returning an incompatible result type. This is fixed by the small change
here to
[lib/Dialect/Torch/IR/TorchOps.cpp](https://github.com/llvm/torch-mlir/compare/main...zjgarvey:torch-mlir:MatMulIntegerFix?expand=1#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4f).
2024-04-15 16:06:47 -07:00
Xida Ren (Cedar) dd967eb199
[ONNX] Support onnx.LSTM (#2969)
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-08 12:23:33 -07:00
Gaurav Shukla 129a79417a
[MLIR][ONNX] Fix onnx.gather_nd implementation (#3070)
The indices should be expanded before the torch.gather operation.

Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-04-01 20:17:09 +05:30
zjgarvey c19fc9ba47
[ONNX] Fixes Issue with Dynamic Dims in GlobalAveragePool -> Torch Conversion (#3053)
Two e2e tests (AdaptiveAveragePool1/2dUnitOutputSizeDynamic) were
failing due to numerics. This was as a result of passing -1 as the
kernel size in the lowering for the corresponding onnx op
GlobalAveragePool.
2024-03-28 09:43:09 -07:00
Vivek Khandelwal 9ae33e482e
[MLIR][TORCH] Add OnnxToTorch lowering for ops (#3049)
This commit adds the OnnxToTorch lowering for the Mish, Softplus,
HardSwish, Trilu, ThresholdedRelu op

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-25 20:29:07 +05:30
zjgarvey 6aa481c204
[ONNX] LogSoftmax to Torch (#3024)
This PR adds support for onnx.LogSoftmax both for old versions (<13,
with axis >=0), and new versions (13).
2024-03-22 11:01:39 -07:00
Gaurav Shukla 50635dd509
[ONNX][MLIR] Add support for onnx.gather_nd (#2988)
Signed-off-by: Gaurav Shukla <gaurav@amd.com>
2024-03-22 21:38:39 +05:30
Pavani Chowdary c51e2130f2
[onnx] support for lowering mod op from onnx to torch (#2859)
nod-ai/Shark-Turbine#267

---------

Authored-by: boddu.pavani@research.iiit.ac.in
Co-authored-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-03-18 17:54:37 +05:30
Rob Suderman 0723584936
[torch] Add folder for torch.aten.*.Scalar comparisons (#3000)
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
2024-03-08 13:44:00 -08:00
Andreas Falkenberg 551a4e45f3
[onnx] Add support for `onnx.Gemm` with no bias (#2993)
Previous gemm version required a bias vector. 
This provides an alternate path to `Torch::AtenMm`
with no bias operation.
2024-03-07 15:58:38 -08:00
Rob Suderman 1964208d19
[onnx] Fix constant pad for dynamic shape (#2989)
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.

Work TBD for reflection padding.
2024-03-07 13:29:50 -08:00
Andreas Falkenberg ea76dd12ba
[onnx][torch] Gridsampler E2E test and corrections of gridsampler (#2987)
The addition of an e2e test is actually provided in the Shark-Testsuite.
This adds 2 test cases for the gridsampler e2e test. 
Also as intended there were some items found which needed correction, so
the Gridsampler op has also a change.
2024-03-06 10:56:58 -08:00
Rob Suderman d51e80b648
[onnx] Fix onnx.gather lowering for rank-0 indices (#2973)
We assumed rank was atleast 1 however it can be rank-0, generating an
illegal pair of flatten / unflatten operations. Corrected this.
2024-03-04 08:25:19 -08:00
Andreas Falkenberg 5437f32193
[onnx][torch] Lower `onnx.grid_sampler` to the `torch` equivalents (#2952)
This is the lowering of gridsampler from onnx to torch using our prior
implementation of AtenGridSamplerOp.
Here are several checks for cornercases implemented. We may decide to
have part of these checks in AtenGridSamplerOp instead of the onnx
lowering portion.
2024-02-28 13:52:15 -08:00
aldesilv d29157b33f
OnnxToTorch support for onnx.InstanceNormalization op (#2710)
https://github.com/nod-ai/SHARK-Turbine/issues/327
2024-02-19 19:53:48 +05:30
Rob Suderman 7a0d0e954b
[onnx] Fix onnx.gather lowering to use torch.aten.index_select (#2913)
Onnx's gather maps directly to `torch.aten.index_select`. We should just
use that path.
2024-02-16 16:05:44 -05:00
Rob Suderman 074f112d6a
[onnx] Add testing using the `onnx` compilation using torch tests (#2795)
We can route the torch tests via `onnx` using the `torch.onnx.export`
tooling. We can then reimport, lower to torch, and compile to linalg to
validate the onnx path is working correctly.

The current implementation exposes some failures in the `onnx` path so
we cannot enable the onnx test suite yet due to segmentation faults.
2024-02-15 10:17:13 -08:00
saienduri 9b967f6b5a
[MLIR][ONNX] Add OnnxToTorch support for Mean, IsInf, IsNaN, PRelu op (#2801)
This commit adds the OnnxToTorch support for Mean, IsInf, IsNaN, and
PRelu ops. All high priority ops were taken so went with these. The non
trivial ones are Mean and IsInf which might require extra review

---------

Co-authored-by: MaheshRavishankar <mravisha@amd.com>
2024-02-13 12:38:21 +05:30
Ashay Rane 21f070e95f
onnx: fix checks in TorchOnnxToTorch pass to match the ONNX spec (#2848)
This PR contains three commits to update the validation checks in the
ONNX -> Torch conversion pass for the AveragePool, Pad, and Slice operators:

> onnx: fix preconditions for lowering AveragePool ops
> 
> The `pads` attribute of the AveragePool operator specifies the value to
> pad at both the beginning as well as the end of the axis (see
> https://onnx.ai/onnx/operators/onnx__AveragePool.html#attributes), so
> the size of this attribute should be twice the rank of the input tensor.
> However, our TorchOnnxToTorch bails out early since it incorrectly
> compares the pads attribute with the rank (not twice the rank) of the
> input tensor.
> 
> This patch fixes the code to match the spec and adds a lit test.

> onnx: allow optional constant value for Pad operator
> 
> The `constant_value` input of the onnx.Pad operator is optional (see
> https://onnx.ai/onnx/operators/onnx__Pad.html#inputs), but the
existing
> logic for lowering the operator into the Torch dialect assumes that it
> is mandatory.
> 
> This patch makes the attribute optional and constructs a default value
> (a list of zeros the size of the input tensor) if the attribute was not
> specified.

> onnx: fix checks for axes and steps inputs of Slice operator
> 
> The ONNX Spec for the Slice operator allows the `starts` and `ends`
> inputs to have fewer indices that the dimensions of the `data` tensor
> (see https://onnx.ai/onnx/operators/onnx__Slice.html), but our code
> expects these inputs to be as many as the `data` tensor's dimensions.
> 
> More precisely, the spec requires that the `starts` and `ends` inputs
> are only as long as the `axes` input, but since the `axes` input is
> optional, the default type for the `axes` input has to match the type
> for the `starts` and `ends` inputs. Moreover, the number of indices in
> the `steps` input also has to match those in the `axes` inputs (instad
> of matching the dimensions of the `data` input).
> 
> This patch fixes the checks in the TorchOnnxToTorch conversion so that
> they match the ONNX spec.
2024-02-07 21:19:27 -08:00
Ben Vanik 962d514308
Fixing implicit double->float conversion warning. (#2850)
`[build]
D:\Dev\iree\third_party\torch-mlir\lib\Conversion\TorchOnnxToTorch\DefaultDomainGtoP.cpp(734):
warning C4305: 'argument': truncation from 'double' to 'float'`
2024-02-01 22:02:44 -08:00
Rob Suderman 29baa813bd
[onnx] Fix `pool` lowering for non-symmetric padding (#2837)
`torch` requires that padding be symmetric for pooling operations. To
support non-symmetric pad we need to separately materialize out the
padding operation.

---------

Co-authored-by: James Newling <james.newling@gmail.com>
2024-02-01 14:35:21 -08:00
Quinn Dawkins 494089d53d
Clang format refresh (#2812)
After noticing a number of commits with unrelated formatting changes,
I think something was changed with clang-format at one point and we're
seeing a number of unrelated changes. Doing a refresh can help avoid
this.

The changes made here came from
```
find lib -iname *.h -o -iname *.cpp  | xargs clang-format -i --style=llvm
find include -iname *.h -o -iname *.cpp  | xargs clang-format -i --style=llvm
find projects -iname *.h -o -iname *.cpp  | xargs clang-format -i --style=llvm
```
2024-01-29 12:59:33 -05:00
Rob Suderman d3fd754b93
[onnx] `onnx.MatMulInteger` lowering to `torch.mm` and `quint*` types (#2761)
Torch does not have an equivalent matmul operation for integers. Instead
it sidechannels the information via its quantized types. For this
lowering we setup these sidechannels then invoke `torch.mm`.
2024-01-29 09:40:21 -08:00