Commit Graph

16 Commits (345dfd5903633a19d38b069ca42b788dd4caf3a0)

Author SHA1 Message Date
Ashay Rane 67ab708b63
python: separate build- and test-related pip dependencies (#1874)
We want to ensure that pip packages required for building torch-mlir
should be included in the dependencies of torch-mlir, but we don't want
the pip packages required for _testing_ of torch-mlir to be included
among the dependencies.  To be able to specify and install one set of
dependencies and not the other, this patch separates the pip packages
into two files: build-requirements.txt and test-requirements.txt.

This patch also updates references to the requirements.txt file so that
CI builds that run end-to-end tests install test-related pip
dependencies while everything else (including WHL builds) sticks to just
the build-related pip dependencies.

Despite this change, this patch should not affect a torch-mlir
developer's workflow.  More precisely, since this patch makes the
top-level requirements.txt file refer to both build-requirements.txt and
test-requirements.txt files, a torch-mlir developer should be able to
continue referring to the requirements.txt file without any impact.
2023-02-13 21:22:09 -06:00
Maksim Levental 2eddb3fde7
WIP: No PyTorch dep (#1854) 2023-02-13 14:21:06 -06:00
Ashay Rane a897c49803
CI: miscellaneous fixes for Release builds (#1781)
- Use v3 of actions/checkout, since the version we use (v2) uses
   Node.js 12, which is deprecated by GitHub.

 - Source the PowerShell venv sctipt (instead of the bash sript) since
   the calling script is a PowerShell script.  Without this, the build
   doesn't use venv at all.

 - Make the build dependencies in whl-requirements.txt (used by
   setup.py) match those in requirements.txt.  To that end, this patch
   creates a build-requirements.txt that is referenced by
   requirements.txt and whl-requirements.txt.
2023-01-06 20:41:43 -06:00
Ashay Rane f1ef5681cc
build: pin torchvision to latest nightly (#1584)
We currently pin the `torch` package to the latest nightly version, but
since `torchvision` depends on the `torch` package, the pip resolver
then has to run through an extensive list of `torchvision` packages that
can be installed with the pinned `torch` package.  This search fails in
the RollPyTorch action, causing pip to settle on an old version of
`torchvision` that does not work with our tests.  In reality, we are
only interested in a specific version of the `torchvision` package.

To make the dependency explicit and to prevent test failures because of
incorrect package installations, this patch makes two key changes:

1. `torchvision` is now pinned to the latest nightly release in
   pytorch-requirements.txt along with the version of `torch` that is
   necessary to install the requested `torchvision` package

2. The RollPyTorch action now looks for the latest `torchvision` package
   instead of the latest `torch` package before writing the version
   numbers for pinning in pytorch-requirements.txt
2022-11-14 15:56:02 -06:00
Ashay Rane 9a73b9e6c7
build: un-pin the ninja pip package version (#1562)
Now that the ninja pip package issue has been resolved, this patch
removes the pinned version from requirements.txt so that we can go back
to using the most recent version of ninja.
2022-11-06 14:12:28 -06:00
Ashay Rane 27d8d47022
build: pin ninja pip version temporarily to resolve build failure (#1558)
Going from ninja v1.10.2 to v1.11.1, there is a change that breaks the
CI builds with the following error:

```
CMake Error at CMakeLists.txt:47 (project):
  Running
   '/main_checkout/torch-mlir/docker_venv/bin/ninja' '--version'
  failed with:
CMake Error: CMAKE_ASM_COMPILER not set, after EnableLanguage
```

Ostensibly, the reason for the error about the ASM compiler is because
llvm-project/llvm/CMakeLists.txt includes ASM among the list of
languages used in the LLVM project. Adding `-DCMAKE_ASM_COMPILER=clang`
does not resolve the error.

Until we figure out why the new version of ninja causes the build
failures, this patch pins the ninja to the one that worked.
2022-11-05 12:20:56 -05:00
Ashay Rane 0b46462528
Miscellaneous fixes for Windows builds (#1376)
* test: allow spaces in path to Python executable

On Windows, the path to the Python binary may contain spaces, so this
patch adds quotes around the path to the python executable.

Thanks to @sstamenova for suggesting the fix!

* python: remove header file that causes Windows build failures

Similar to https://reviews.llvm.org/D125284, we can safely remove this
header file without affecting the build on either Linux.  It is
necessary to remove this header file on Windows builds since otherwise
it causes build errors.

* python: drop `TORCH_API` from function defined in Torch-MLIR

`TORCH_API` should apply to functions that are either exported by
libtorch.so or ones that are imported from libtorch.so by its downstream
consumers (like Torch-MLIR).  Neither case applies to the
`importJitFunctionAsFuncOp()` function, since it is defined in
Torch-MLIR (and thus outside libtorch.so).  This patch fixes the problem
by dropping `TORCH_API` from that function's declaration.

* python: make output of class anotations deterministic

The `class-annotator-repr.py` test checks for class annotations in a
specific order, but prior to this patch, the order was
non-deterministic, since the code iterated on an _unordered_ map.

This patch makes the iteration order deterministic through two changes:
1. using a sorted map
2. using the class qualified name instead of the address of the class in
memory

* test: use Python3_EXECUTABLE as interpreter path for consistency

This ensures that tests use the Python3 version that was detected using
CMake, instead of whichever python version that happens to be in the
PATH variable when invoking the test.

* test: fix RUN string

The parenthesis syntax does not run on Windows (the shell interprets the
`(` character as part of the path).  Moreover, the ODR violation in the
comment no longer seems to apply.

* python: port parallel test framework to Windows

Since Windows does not support `fork` natively, Python's
`multiprocessing` module needs to use `spawn` on Windows.  However, to
use `spawn`, the multiprocessing module serializes (or pickles) the
worker function and its arguments.  Sadly, the multiprocessing module
(both the default one in Python and the one that is extended in PyTorch)
is unable to serialize lambda functions (see
https://stackoverflow.com/a/19985580) for detals.

Unfortunately, given how our tests are structured, we require that the
function under test is passed as an argument to another function, so we
cannot sidestep our use of lambda functions.

To resolve this problem, this patch makes use of the `multiprocess` and
`dill` Python modules, which together offers a multiprocessing mechanism
that can serialize lambda functions.  The multiprocess module also
offers a process pool, which simplifies the code for our parallel
testing framework.
2022-09-29 12:07:43 -05:00
Ashay Rane 53e76b8ab6
build: create RollPyTorch to update PyTorch version in Torch-MLIR (#1419)
This patch fetches the most recent nightly (binary) build of PyTorch,
before pinning it in pytorch-requirements.txt, which is referenced in
the top-level requirements.txt file.  This way, end users will continue
to be able to run `pip -r requirements.txt` without worrying whether
doing so will break their Torch-MLIR build.

This patch also fetches the git commit hash that corresponds to the
nightly release, and this hash is passed to the out-of-tree build so
that it can build PyTorch from source.

If we were to sort the torch versions as numbers (in the usual
descending order), then 1.9 appears before 1.13.  To fix this problem,
we use the `--version-sort` flag (along with `--reverse` for specifying
a descending order).  We also filter out lines that don't contain
version numbers by only considering lines that start with a digit.

As a matter of slight clarity, this patch renames the variable
`torch_from_src` to `torch_from_bin`, since that variable is initialized
to `TM_USE_PYTORCH_BINARY`.

Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2022-09-28 15:38:30 -05:00
Renato Golin 51bfe25c89
Add PyYaml to requirements.txt (#1174)
Building on a fresh environment + virtualenv + in-tree build errors out
becayse PyYaml isn't installed. Adding to requirements.txt fixes that.

Fixes #1173
2022-08-11 17:59:39 +01:00
powderluv 1adc0f1661
Revert requirements.txt (#930)
https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html

is going to be deprecated via pip 22 since it is not html5.
2022-06-10 15:23:12 -07:00
powderluv 02b917f769
Change to the real PackedParams.h location (#929)
Also update the PyTorch nightly URL
2022-06-10 14:43:52 -07:00
powderluv 4ef61aa27f
Minor buildsystem fixes (#778)
Sets up auto-pinning of latest torch-nightly
2022-04-21 15:53:00 -07:00
powderluv cc3a4a58ef
Add oneshot release snapshot for test/ondemand (#768)
* Add oneshot release snapshot for test/ondemand

Add some build scripts to test new release flow based on IREE.
Wont affect current builds, once this works well we can plumb it
in.

Build with manylinux docker

* Fixes a few issues found when debugging powderluv's setup.

* It is optional to link against Python3_LIBRARIES. Check that and don't do it if they don't exist for this config.
* Clean and auditwheel need to operate on sanitized package names. So "torch_mlir" vs "torch-mlir".
* Adds a pyproject.toml file that pins the build dependencies needed to detect both Torch and Python (the MLIR Python build was failing to detect because Numpy wasn't in the pip venv).
* Commented out auditwheel: These wheels are not PyPi compliant since they weak link to libtorch at runtime. However, they should be fine to deploy to users.
* Adds the --extra-index-url to the pip wheel command, allowing PyTorch to be found.
* Hack setup.py to remove the _mlir_libs dir before building. This keeps back-to-back versions from accumulating in the wheels for subsequent versions. IREE has a more principled way of doing this, but what I have here should work.

Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
2022-04-21 02:19:12 -07:00
Sean Silva 140babd952 Add minimal support for Union types.
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287

Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
  along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
  that derefines to a UnionType (this also fixes #664).

There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
2022-03-29 17:45:48 -07:00
Sean Silva 3a96078571 Pin the CI to the latest working PyTorch.
I am investigating the breakage.

Also, fix "externals" rename in setup.py and some cases where we weren't
using `requirements.txt` consistently.

Also, fix a case where the packaging script would get confused due to
".." in the path name.
2022-03-29 15:02:17 -07:00
Stella Laurenzo a23d77100b Set some wheel building optimization options.
* Also adds a requirements.txt and updates docs to reference it versus stringy pip install.
* Adds doc with instructions on creating a wheel.

Fixes #370
2021-10-25 18:30:53 +00:00