This commit adds lowering of `aten.ge.float`, `aten.ge.float_int`,
`aten.ne.float_int`, `aten.gt.float_int` and `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py and scalar_comparison.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
- This commit adds support for `aten.mean.dim` op.
- It also adds a new test script `stats.py` for statistics related ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit decomposes `aten.to.dtype_layout` op into `aten.to.dtype` op.
This commit also fixes the formatting for the file type_conversion.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds lowering of `aten.masked_fill.Scalar` op.
This commit also fixes the formatting of the file constant_alloc.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit fixes the `ConstantPad2dStaticModule` test case by adding
the lowering of `aten.pad` operation. Previously the test case
mapped to `aten.constant_pad_nd` operation.
The `aten.pad` now decomposes into `aten.constant_pad_nd` operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
1. This commit adds lowering of "while-like" prim loop to scf.while
operation.
2. Adds lowering of "for-like" prim loops to scf.for operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
Fix the inplace update tensor issue we had
where the torchscript execution would update the input value inplace
resulting the actual test not being able to see the original input
value.
This commit adds more test cases `aten::index_put` op.
This commit also fixes formatting issues with the test file index_put.py
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds lowering of `aten.ceil.float` op.
This commit also fixes formatting for the file scalar.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
Added the dynamic registration of return function to the execution
engine. This makes sure that different/multiple return types are supported.
Also, updated the .style.yapf indentation to 4.
This makes it much easier to convert models and hides all the
ClassAnnotator complexity.
This also adds a new example `torchscript_resnet18_all_output_types.py`
which shows the ResNet18 IR for all output types.
Also,
- This moves `run_pipeline_with_repro_report` to
`torch_mlir.compiler_utils`.
That way, downstreams don't have to duplicate this list.
Also, remove "external config" feature, since it is subsumed by just
importing the test suite.
This commit adds lowering of `aten::max_pool2d_with_indices_backward` op.
This commit also fixes formatting issues in basic.py.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds the following support to the op `nll_loss_backward`:
- `input` tensor can be rank-1
- `weight` parameter
- `reduction` parameter
- `target`, `grad_output`, `total_weight` can be rank-0
- Checks that input tensors are of the expected type
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
This commit decomposes different variants of `aten.where.*` op into
`aten.where.Self` op. It covers `aten.where.Scalar`,
`aten.where.ScalarSelf` and `aten.where.ScalarOther` ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.
This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Effectively, this mode works by compiling op by op as the NN is eagerly executed by PyTorch. Entailed in that compilation is building a representation of the op that can be `torch.jit.script`ed, importing using `ModuleBuilder`, and then executing (e.g., with `RefBackendLinalgOnTensorsBackend`). This mode includes a fallback to conventional PyTorch if anything in the torch-mlir compilation process fails (e.g., unsupported op).
Currently, all e2e tests pass execpt for two that involve an upstream PyTorch bug (https://github.com/pytorch/pytorch/issues/74400).
High priority next steps:
1. A compile cache in order to speed up reruns of the same NN.
2. Integration with IREE (though not in this repo).
3. Integration with `torch.distributed`.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.
This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.
Recommended review order:
1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
`canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.
Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).
Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
The pass is mostly borrowed from the BufferizeAnyLinalgOp pass in mlir
upstream with some minor changes. At a high level, it's a naive partial
bufferization pass which allocate new buffers for all the output
tensors. The initial value of an output buffer is copied from the
original buffer if there are uses of the original value.
One difference from linalg bufferization pass is the way to tell if
the loop body uses the init value of output operand. For TMTensor ops,
it differs from op to op because the payload region doesn't represent
the entire loop body.
- This commit adds lowering of `aten.Bool.Tensor` and
`aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
`aten.Float.Tensor` op, it folds to the scalar number.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
Support for passing memref of bool types as a function argument
and return is added in ref-backend.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
This is to facilitate scalar type conversion in the TorchToLinalg. As
part of adding the helper, this PR also:
- Updated `AtenAddTensorOp`, `AtenSubTensorOp` to use the helpers to
support more type variants.
- Added e2e type promotion testing.
- Added i32 memref return/arg type to support e2e testing.
Support for returning elemental types. Previously, only
memref types as returning types was supported. All the hacky ways
to write tests which return elemental types should be taken care of.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
- Split out TOSA in the CI.
- Add summary of unexpected test outcomes. This works better when there
are many XFAIL'ing tests, as it only prints out the error_str on
FAIL, not on XFAIL. Example here:
https://gist.github.com/silvasean/c7886ec7b3d35c21563cb09f7c3407da
Part of #380
Also
- BoolType is not considered as Scalar
- e2e framework fixes for nan handling
- `tu.rand(..., low=, high=)` support
- delete unused variable (fix warning)
- Add IouOfModule from #380 to e2e test suite (this is a common
calculation in vision models)
Your branch is ahead of 'origin/main' by 1 commit.
* Print more exception info on error during test execution
* Fix formatting
* Add aten::gelu lowering
Co-authored-by: Boian Petkantchin <boian@nod-labs.com>
- Added a DecomposeComplexOps pass to decompose complex torchOps.
- Refactored `visitAtenArgmaxOp` and `visitAtenAnyDimOp` to
`visitReductionAlongDimIntOp`.
- Moved some helper functions into
torch-mlir/Dialect/Torch/Utils/Utils.h to be shared by multiple files.
- Added support for f64 tensor as argument and return types.
- Move `run_pipeline_with_repro_report` to a more common place, and use it
consistently
- Attach a `torch.debug_module_name` to the enclosing `builtin.module`
op to allow for self-contained error reporting (not needing to pass
the names around.
- Remove redundant error reporting in linalg_on_tensors_backend.py and
tosa_backend.py (their respective backend abstract base classes now
take care of the error reports themselves)
- Save off original value of sys.stderr, rather than always resetting to
`sys.__stderr__`. This is just more hygienic, and allows nesting if
desired.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```
The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.
Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
`abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.
The standard file comment is now:
```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```
See `LICENSE` in the project root for the terms of both licenses.
Implement the `lazytensor` python package for converting
lazy computations captured by the Lazy Tensor Core into MLIR.
This PR also fixes a few things with `torchfx` and its example