As titled, create a new decomposition for `aten.fmod.Tensor` to
`aten.div`, `aten.trunc`, `aten.mul` and `aten.sub`. Note that we only
use `aten.trunc` for floating point operations. This further gets
decomposed to `aten.where` etc. by other existing decompositions.
This decomposition now makes TOSA pass for a simple model with
`aten.fmod` while it makes `stablehlo` fail. For now, we disallow this
decomposition for `stablehlo`
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
* not to decompose `aten.amax` on `stablehlo` backend. Because it could
be lowering to `stablehlo.reduce` directly.
* lowering `aten.max.dim` to `stablehlo.reduce apply max` when
`AtenMaxDimOp.getIndices()` doesn't have users. It's more simple.
This is a large change because prior to this point, Python files in the
project were not consistently formatted. This reformats them all with
black defaults.
Based on experience with prior projects, if you have a dev/long-term
branch with Python patches, you can minimize merge conflicts prior to
rebasing to include this commit by running `black` on your modified
Python files, squashing, and then rebasing/merging.
The previous conversions for AtenAdaptiveAvgPool1dOp and
AtenAdaptiveMaxPool2dOp are refactored into a general templated
conversion that works for all of the AtenAdaptive...PoolNdOp's.
New support is added for the following ops:
1. AtenAdaptiveMaxPool1d
2. AtenAdaptiveMaxPool3d
3. AtenAdaptiveAvgPool3d
Support is also provided for passing inputs without batch dimensions.
For example, applying adaptive_avg_pool2d to an input tensor of rank 3.
After [pytorch #118162](https://github.com/pytorch/pytorch/pull/118162)
gets down to torch-mlir, I'll add a test for AdaptiveMaxPool1d with
return_indices (which will pass with that upstream fix).
---------
Co-authored-by: James Newling <james.newling@gmail.com>
Existing lowering via aten.view does not work as well for dynamic shapes
as the lowering to tensor.expand must re-infer dynamic shape matching.
Better to directly lower.
Link to related RFC:
https://discourse.llvm.org/t/rfc-rename-torch-mlir-compile-apis-and-introduce-fx-based-analogs/76646
This commit updates the documentation, tests, CMake files, and API for
the proposed changes in the RFC. There is a new torch_mlir/fx.py for
user level APIs related to importing modules and a corresponding test
for this path can be found at test/python/fx_importer/basic_test.py.
---------
Co-authored-by: MaheshRavishankar <mravisha@amd.com>