We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.
This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).
This involved adding a new op `numpy.overwrite_array`.
```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```
This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.
Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.
We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.
As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
Changes:
- linalg init tensor change (outs+init -> just outs)
- IntegerType::get and other builtin types now take the context as the
first arg
- LLVMType::* is gone. Now LLVM Types are just regular Type's.
* Incorporates source fixes.
* Uses upstream pybind11 detection logic.
* Patches CI.
* This may break the CI, which will need to be fixed manually in a followup.
Note that unlike aten.matmul which has dynamic behavior
depending on the argument ranks (can do matrix-matrix, matrix-vector,
batch matmul, etc.), aten.mm is just a vanilla matrix
multiply, which can be lowered precisely to tcf.matmul.
The "test" is really just an example that I stared at while getting my
feet wet with this. We probably want something that actually tests this
as part of `ninja check-npcomp`.
* convolution, convolution_backward, _log_softmax, _log_softmax_backward_data, nll_loss_forward, nll_loss_backward, nll_loss2d_forward, nll_loss2d_backward, copy_
* Extends the recognition logic and metadata for handling inplace transformations, optional tensors, ints, lists and dropped args.
* The kernel_calls generated by test_conv_nllloss_grads.py now convert to ATen.
* The result *almost* comes out as a pure tensor program with the exception of the copy_ op, which I will do some followup work to deal with.
* More progress on #97
* Deletes prior code generator from previous attempt (moved some of it into this one).
* Renames old generated tablegen source to "Legacy".
* Generates ODS and import rules for most binary and unary arithmetic ops.
* Removes old generated ops and integration tests that were testing details of the prior setup.
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.
Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
* Move dialect registration to tablegen.
* Register the ListType in tablegen.
* Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)
Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
This patch adds a dialect intended to be used as a frontend dialect
to facilitate lowering from "A Tensor Library" in torch/pytorch.
This patch includes several passes that are useful in conjuction with the
dialect:
--aten-layer-name: Generates layer names for each operation, which are not
present in the original pytorch.
--aten-to-std: Lower the ATen dialect into standard dialect function calls.
--return-elimination-pass: convert functions (primarily the toplevel function)
to pass return values by reference. This simplifies pytorch integration.
--aten-op-report: generate a textual report about the model
--liveness-report
Future patches will implement actual integration with the pytorch jit to
intercept and generates MLIR in this dialect, then lower the resulting MLIR
into function calls through aten-layer-name -> aten-to-std ->
return-elimination -> std-to-llvm. The result would then jitted using the LLVM
jit, linked against a runtime library which makes calls back into pytorch to
implement all the layers.
Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>
Co-authored-by: Jeff Fifield <jeff.fifield@xilinx.com>