We can route the torch tests via `onnx` using the `torch.onnx.export`
tooling. We can then reimport, lower to torch, and compile to linalg to
validate the onnx path is working correctly.
The current implementation exposes some failures in the `onnx` path so
we cannot enable the onnx test suite yet due to segmentation faults.
This test exposes issues that need fixing
(1) propagate sparsity into the FX graph (over elt-wise) (2) batched
dimensions need a new "dense(batch)" format
Various improvements on sparsity metadata:
(1) define single data structure for all sparsity related metadata
(2) handle batched dense dimensions, as well as dense subtensor
dimensions
(3) refine sparsity propagation for deeper networks
This PR introduces a sparse_jit wrapper that can run simple models with
sparse tensor inputs end-to-end. The implementation shows all required
components on modifying sparse tensor types with a 1:N relation on the
call sites. Two tests shows that the JIT runs end-to-end while computing
the correct results.
More details to follow (generalizing to COO and different ranks, as well
as support for *output* sparse tensors), but the general concepts are
all here now.
**_Update: Thanks to Rob, bump to proper LLVM/MLIR hash is done!_**
_**NOTE that all parameter passing changes are nicely done "downstream"
in MLIR, so very little changes are required in torch-mlir code
proper**_
---------
Co-authored-by: Franz Haniel <77495327+frafranz@users.noreply.github.com>
Co-authored-by: Franz Haniel <franz.haniel@amd.com>
Link to related RFC:
https://discourse.llvm.org/t/rfc-rename-torch-mlir-compile-apis-and-introduce-fx-based-analogs/76646
This commit updates the documentation, tests, CMake files, and API for
the proposed changes in the RFC. There is a new torch_mlir/fx.py for
user level APIs related to importing modules and a corresponding test
for this path can be found at test/python/fx_importer/basic_test.py.
---------
Co-authored-by: MaheshRavishankar <mravisha@amd.com>
Adds an escape hatch from creating a DenseResourceElementsAttr for
single value tensors into DenseElementsAttr.
For 0d or 1element, splats are better as DenseElementsAttr. Don't use
DenseResourceElementsAttr for it
Fix for https://github.com/llvm/torch-mlir/issues/2765
The onnx docs say that you can't do shape inference using the in-memory
API for models > 2 GB. This fix replaces that API with the file-based
API. Since the new API generates an intermediate file, also added a
--keep switch to keep that file, which I delete by default.
---------
Co-authored-by: Dave Liddell <dliddell@xilinx.com>
Note that we are waiting for actual FX traced graph support for sparse
tensors. For details see
https://github.com/pytorch/pytorch/issues/117188
Until then, however, we provide this clever importer that builds the FX
traced graph for for the dense case and then puts a sparse annotation
back on the parameters.
With import test.
Changes made during upstreaming:
* Removed comments attributing some copied code back to torch-mlir
(since it is now repatriated).
* Re-organized imports.
* Inlined RefMapping/RefTracker and TypeSubclassMap from an external
utility module.
* Added FxImporter class comments.
* Updated stack trace extraction to be fail safe.
* Added an entry-point for `import_frozen_exported_program` which uses
the shiny new upstream `torch.export.export()` API (versus the
lower-level/older API that Turbine is presently using). This
necessitated a small FX rewrite to line external state management up
with current conventions.
* Adapted one of Turbine's importer tests to go with this initial
submission. Turbine unfortunately has a lot of more-integration-ey
tests, and I would like to extract those as more of unit tests of the
importer features and upstream them that way vs trying to copy directly.
For now, one overall test with the initial submission gets us moving.
I acknowledge that there are some code quality things that could be
improved in this submission: this was authored over the course of many
months (and often via some trial and error). I would like to keep it
relatively converged with the downstream for the next few steps while
getting the test suite upstreamed. And then it will be easier to take a
hygienic pass through the code.
Including co-authors for contributors in the git log of the original
repository.
Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com>
Co-authored-by: Avinash Sharma <aviator1994@gmail.com>
Co-authored-by: Arham Khan <arhammkhan@gmail.com>
Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu>
Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
This PR adds the `enable_ir_printing` option to `torch_mlir.compile`,
which can be used to print the IR for all intermediate passes.
When running the added test file via:
```shell
$ python test/python/compile.py 2> tiny.stderr
```
the file `tiny.stderr` is about 700 KB.
Simple Python console script to import an ONNX protobuf to the torch
dialect for additional processing.
For installed wheels, this can be used with something like:
```
torch-mlir-import-onnx test/python/onnx_importer/LeakyReLU.onnx
```
Or from a dev setup:
```
python -m torch_mlir.tools.import_onnx ...
```
This is part 1 of 2, which will also include upstreaming the FX
importer. I started with ONNX because it forces some project layout
updates and is more self contained/easier as a first step.
Deviating somewhat from the RFCs on project layout, I made the following
decisions:
* Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks
already has opened up that namespace and it seemed to fit. Better to
have fewer things at that level.
* Setup the build so that the root project only contains MLIR Python and
pure Python deps (like the importers), but this can be augmented with
the `projects/` adding more depending on which features are enabled.
* The default build continues to build everything whereas in
`TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a
`torch-mlir-core` wheel with the pure contents only.
`onnx_importer.py` and `importer_smoke_test.py` are almost verbatim
copies from SHARK-Turbine. I made some minor local alterations to adapt
to paths and generalize the way they interact with the outer project. I
expect I can copy these back to Turbine verbatim from here. I also
updated the license boilerplate (they have the same license but slightly
different project norms for the headers) but retained the correct
copyright.
Other updates:
* Added the ONNX importer unit test (which also can generate test data)
in lit, conditioned on the availability of the Python `onnx` package. In
a followup once I know everything is stable, I'll add another env var
that the CI can set to always enable this so we know conclusively if
tests pass.
* Moved the ONNX conversion readme to `docs/`.
* Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` ->
`TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the
JitIR importer and LTC options `cmake_dependent_options` for robustness.
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20
There are two primary goals:
1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.
Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.
This also takes steps toward a couple of other layering enhancements:
* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.
It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.
Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
When using custom ops, sometimes PyTorch will insert namespaces to the
abstract interpretation function name in the format:
`__torch__.{namespace_1}.{namespace_2}...{op_name}`. The extra
namespaces are not part of the abstract interpretation function name,
so it needs to be removed before generating the library of MLIR
snippets of abstract interpretation functions. This commit adds
support for removing the namespace information.
* LTC->MLIR Debug Info support
* SW-95317 Propagate Lazy->Jit->MLIR scope name.
* Enhance location information based on op names
Currently, the location information attached to the ops just considers
the filename, line number and column number. Attaching operation name
would help identify the type of computation by just looking at the
profile of execution.
* Update locations logic; updated debug-info.py test
* Use {scope}/{op_name} format to track names by default
---------
Co-authored-by: Gleb Kazantaev <gleb.kazantaev@cerebras.net>
Co-authored-by: Mark Browning <mark@cerebras.net>
Co-authored-by: Vimal Patel <vimal@polymagelabs.com>
Bool tensors are represented in TorchScript as an array of
`int8_t`s. However, when importing them into Torch-MLIR, the importer
was assuming the array had `int32_t` elements, leading to the importer
reading into memory that was out of bounds. This commit fixes the
casting of the bool tensor.
This commit adds the ability to specify extra abstract interpretation
functions in `torch_mlir.compile` to use during type refinement. This
allows users to easily add custom ops without having to interact with
MLIR or C++ directly.
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend
* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types
* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions
* Test updates
* Move back module variable name
* Remove RefineTypes from TorchMlirLoweringContext::Build()
* Rename pass; Remove passes from base lazy backend
* Rename pass to VerifyBackendContractPass
* Aligned cmd pass name; Fixed TorchConversion passes registration
* test: allow spaces in path to Python executable
On Windows, the path to the Python binary may contain spaces, so this
patch adds quotes around the path to the python executable.
Thanks to @sstamenova for suggesting the fix!
* python: remove header file that causes Windows build failures
Similar to https://reviews.llvm.org/D125284, we can safely remove this
header file without affecting the build on either Linux. It is
necessary to remove this header file on Windows builds since otherwise
it causes build errors.
* python: drop `TORCH_API` from function defined in Torch-MLIR
`TORCH_API` should apply to functions that are either exported by
libtorch.so or ones that are imported from libtorch.so by its downstream
consumers (like Torch-MLIR). Neither case applies to the
`importJitFunctionAsFuncOp()` function, since it is defined in
Torch-MLIR (and thus outside libtorch.so). This patch fixes the problem
by dropping `TORCH_API` from that function's declaration.
* python: make output of class anotations deterministic
The `class-annotator-repr.py` test checks for class annotations in a
specific order, but prior to this patch, the order was
non-deterministic, since the code iterated on an _unordered_ map.
This patch makes the iteration order deterministic through two changes:
1. using a sorted map
2. using the class qualified name instead of the address of the class in
memory
* test: use Python3_EXECUTABLE as interpreter path for consistency
This ensures that tests use the Python3 version that was detected using
CMake, instead of whichever python version that happens to be in the
PATH variable when invoking the test.
* test: fix RUN string
The parenthesis syntax does not run on Windows (the shell interprets the
`(` character as part of the path). Moreover, the ODR violation in the
comment no longer seems to apply.
* python: port parallel test framework to Windows
Since Windows does not support `fork` natively, Python's
`multiprocessing` module needs to use `spawn` on Windows. However, to
use `spawn`, the multiprocessing module serializes (or pickles) the
worker function and its arguments. Sadly, the multiprocessing module
(both the default one in Python and the one that is extended in PyTorch)
is unable to serialize lambda functions (see
https://stackoverflow.com/a/19985580) for detals.
Unfortunately, given how our tests are structured, we require that the
function under test is passed as an argument to another function, so we
cannot sidestep our use of lambda functions.
To resolve this problem, this patch makes use of the `multiprocess` and
`dill` Python modules, which together offers a multiprocessing mechanism
that can serialize lambda functions. The multiprocess module also
offers a process pool, which simplifies the code for our parallel
testing framework.
It seems as though an upstream change in PyTorch has caused the module
dump to include not just the module being tested, but also several
seemingly unrelated functions in the `torch._decom.decompositions`
namespace. The presence of these new functions caused lit to match
variables against incorrect statements (i.e. statements in the
unrelated functions instead of the module under test).
This patch inserts `CHECK-LABEL` statements in the failing tests so that
lit ignores these unrelated functions and only checks the statements at
or after the test module definition.
follow up #761:
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is Float16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
This enables building Pytorch from source in the CI.
The build should mostly hit the ccache.
Release builds will follow once we have some runtime on the CI.
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings. This patch limits the dialects and
passes to only those that are used in torch-mlir.
Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
TorchScript nodes like `prim::Load` and `prim::Store` aren't supported
in torch-mlir because they can't be lowered to backends, but such nodes
can occur in the TorchScript IR.
This patch adds a rudimentary translation from such nodes to
corresponding ops in the Torch dialect. Since we expected such nodes to
go away during lowering because of the SymbolDCE pass, this patch does
not add code to lower these ops beyond the Torch dialect.
In addition to updating the llvm-project submodule, this patch also:
1. updates shape functions and tests so that `func` and `call`
operations refer to the `func` dialect
2. avoid duplicate registration of dialects
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.
Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.
This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
I wasn't able to find exactly what frontend situation created it, but
`torch.jit.trace` will sometimes create functions where the
`jit::Block`'s param node has refined tensor types. So we need to adjust
the function's formal param types to those refined types.
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287
Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
that derefines to a UnionType (this also fixes#664).
There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
This leads to much more succinct types in many cases:
```
!torch.list<!torch.int>
!torch.list<int>
!torch.tuple<!torch.list<!torch.int>, !torch.list<!torch.int>>
!torch.tuple<list<int>, list<int>>
!torch.optional<!torch.list<!torch.int>>
!torch.optional<list<int>>
!torch.list<list<list<tensor>>>
!torch.list<!torch.list<!torch.list<!torch.tensor>>>
```
I would like to take this further and allow omitting the `!torch.`
prefix in all cases, but that's harder -- for example, we currently use
`FuncOp` for functions, and so I don't think we can customize the
printing there. It seems like it will be a longer road to getting that
level of customization.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.
This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.
Recommended review order:
1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
`canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.
Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).
Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
Prior to this commit, importing a `prim::Constant` node with list type would result in an error since it was not supported. `ivalue_importer::importIValue` was modified to return the MlirValue corresponding to the root so its parent operation could be extracted.
- Move `run_pipeline_with_repro_report` to a more common place, and use it
consistently
- Attach a `torch.debug_module_name` to the enclosing `builtin.module`
op to allow for self-contained error reporting (not needing to pass
the names around.
- Remove redundant error reporting in linalg_on_tensors_backend.py and
tosa_backend.py (their respective backend abstract base classes now
take care of the error reports themselves)
- Save off original value of sys.stderr, rather than always resetting to
`sys.__stderr__`. This is just more hygienic, and allows nesting if
desired.