This inlines global slots if possible. This allows them to participate
in folding, canonicalization, shape inference, etc.
Example use cases:
- inlining weights and biases that are readonly during inference
- inlining the "training" bool to allow stuff to fold away
For training use cases (especially internal training loop), we will need
something smarter to get good performance. That would look like an "SSA
formation" which promotes the global slots to tensors in the program,
flushing them back to the slots at the minimal number of necessary
places. We might want to let backends do that transformation though.
This also interacts with shape inference (type bounds on the slots to
even lower them to backends in the first place).
- Move frontend lowering pipelines to c++ (this helps with reproducing
failures in npcomp-opt)
- Add debugging printouts when compilation fails on RefBackendTestConfig
The experience now when a test fails during MLIR lowering is now like this:
```
NPCOMP TorchScript Object Graph IR -> NPCOMP Backend IR lowering failed with the following diagnostics:
failed to legalize operation 'torch.global_slot'
Module does not conform to npcomp's backend contract. See dialect conversion legality information above.
Error can be reproduced with:
$ npcomp-opt -torchscript-to-npcomp-backend-pipeline /tmp/ResNet18Module.mlir
```
And when TorchScript->MLIR import fails it looks like this:
```
PyTorch TorchScript module -> NPCOMP Object Graph IR import failed with the following diagnostics:
unhandled prim operation: %18 : int = prim::min(%17) # /usr/local/google/home/silvasean/.local/lib/python3.9/site-packages/torch/nn/functional.py:4532:4
```
Also,
- Add `--filter=<regex>` to e2e test harness to filter tests.
- Add a few prim ops that were needed to import ResNet18
- Fix torch.prim.Loop.condition assemblyFormat (it previously would not
round-trip in the case of no loop-carried variables)
This happens in practice with e.g. ResNet from torchvision (multiple
instances of the same BatchNorm class).
The key observation is that for this program, and the expected set of
programs, we can convert the program to the same globalized form with a
bit more static analysis and effort to suitably monomorphize the
program. Though what we are doing here is fairly annoying to implement,
it saves any nontrivial later pass from having to do similar analyses
(or worse). E.g. shape inference would need to be object-graph aware,
mutation/lifetime analyses would have to be aware, etc. Additionally, it
would make us front-load what it means to have a !torch.nn.Module type
on an ABI boundary, which we are just not ready to handle.
I'm really, really hoping that in practice we can get away with
this, otherwise it's going to be really rough designing a representation
(and implementing everything to back it) that is convenient to transform
and gracefully scales from full object graph (in the most dynamic case)
down to a fixed set of global slots like we have here (in the most
static case, which we presume a lot of practical programs fall into).
This also involved introducing a
`torch-prepare-for-globalize-object-graph` pass that does a minimal set of
lowerings to simplify the IR into a more orthogonal and analyzable form,
and a `torch-globalize-pipeline` helper.
Recommended review order:
- updated documentation in Passes.td
- new tests in `globalize-object-graph-multiple-instances*.mlir`
- implementation of GlobalizeObjectGraph.cpp
- PrepareForGlobalizeObjectGraph.cpp + prepare-for-globalize-object-graph.mlir
- misc stuff like torch-globalize-pipeline pipeline definition.
With this, we can import, globalize, and inline resnet18 from
torchvision:
https://gist.github.com/silvasean/821586afc19b67d9fb72030b2e0adeb8
This required restructuring of how we model TorchScript on import. The
main difference is that now we split out a `torch.class_type` that holds
methods and declarations of the types of each slot. This is more
consistent with TorchScript (our previous representation was
"denormalized").
Recommended reading order:
1. check out the description of `torch.class_type` in `TorchOps.td` and
look at `test/Dialect/Torch/ops.mlir` and
`frontends/pytorch/test/module_import/` to familiarize with the new
representation.
- Just look at the new IR. The diff between the old names and new
names is confusing.
2. check out `test/Dialect/Torch/globalize-object-graph*.mlir`
and read along with the pass description in
`include/npcomp/Dialect/Torch/Transforms/Passes.td`
3. Read the code in `GlobalizeObjectGraph.cpp` and miscellaneous changes
in `ivalue_importer.cpp`, `TorchOps.cpp`, etc.