This commit removes almost all of the valsem ops, since the value
semantics version of the ops now exist in PyTorch. The only op missing
is `aten.bernoulli_.float`. In addition, this commit also simplifies
the implementation of `aten.fill.Scalar` by moving it to the pattern
that converts elementwise ops.
* Replace CHECK_EQ with TORCH_CHECK_EQ
* Check value of TORCH_MLIR_USE_INSTALLED_PYTORCH during LTC build
* Update LTC XFAIL with NewZerosModule ops
* Explicitly blacklist _like ops
* Automatically blacklist new_/_like ops
* Prune away unused Python dependencies from LTC
* Add flag to disable LTC
* Autogen dummy _REFERENCE_LAZY_BACKEND library when LTC is disabled
* Implement compute_shape_var
* Removed Var tests from XFAIL Set
* XFAIL tests using _local_scalar_dense or index.Tensor
* Add StdDim tests to XFAIL set
* Autogen aten::cat
* Update native function definitions
* Add ops to support bert lowering
- Add empty_strided and as_strided
- Restore zeros_like to op blacklist (Without this, tensors will be unintentionally created with a CPU device rather than lazy)
- Check for composite implicit ops and add device data IR
- Also fix codegen for functionalization
* Add autogen to CMakeList
* Remove PyTorch submodule
* Reduced BERT model size
* Print Mark Step status in Torch MLIR LTC debug string
* Apply fixes to work with latest upstream/main
- Pass importOptions into getMlirTypeFromTorchType during NodeImporter::importNode
Without this, the tensor type created may have a mismatched type as ImportOptions may cause vtensor to be used instead of tensor
* Update shape inference functions
- Fixed compute_shape_native_batch_norm when mean and var are uninitialized
Previously, the number of shapes returned would be <3 if either mean or val was didn't exist. Instead, we now initialize them with a vector matching the number of channels.
- Implemented compute_shape_mul
- Fixed bug in reshape shape inference error message
* Get MLIR backend more consistent with TS backend
- Remove LazyNativeFunctions::_unsafe_view from autogen
- Blacklist ops to make JIT graph more like output of TS backend
- Print graph when SSA value has mismatch of types and results
- Remove normalize_index from LazyShapeInference
- Fix seeds for LTC example models
* Update and clean up shape inference functions
- Prune shape inference functions
- Add shape inference function for GenerateSlice
- Add shape inference function for GenerateCopy
Co-authored-by: Henry Tu <henry.tu@cerebras.net>
* Save InputOutputAliases to TorchMlirComputation
* Implement GetResultShape for TorchMlirLoweringContext
* Use optional return type for GetResultShape
* Remove support for aten::detach
With this op enabled, tensors were being copied, which resulted in incorrect aliasing.
* Add newline before printing I/O alias mapping
* Changed printout to use "Input param" as label instead of "Input"
* Remote shape inference function for aten::detach
* Moved implementation of SetUpAlias to MlirLoweringContext
As part of this change, TorchMlirComputation has been moved to the end of mlir_lowering_context.h so that it can access some new structs in TorchMlirLoweringContext
* Use updated PyTorch API
* Remove GetResultShape
Complements this upstream PyTorch PR: pytorch/pytorch#75828
This PR adds support for mapping input and output tensors which alias each other. (e.g. maps input weight tensor in parameter to the same tensor in output after a training iteration)
MLIR:
func @graph(%arg0: !torch.vtensor<[1,5],f32>, %arg1: !torch.vtensor<[1],si64>, ..., %arg6: !torch.vtensor<[10,5],f32>, %arg7: !torch.vtensor<[10],f32>, ...) {
...
return %arg0, %arg1, %17, %23, ... : !torch.vtensor<[1,5],f32>, !torch.vtensor<[1],si64>, !torch.vtensor<[10,5],f32>, !torch.vtensor<[10],f32>, ...
}
Input/Output Alias Mapping:
Output: 0 -> Input: 0
Output: 1 -> Input: 1
Output: 2 -> Input: 6
Output: 3 -> Input: 7
The aten::detach op has also been disabled in this PR to fix the issue of tensors not aliasing properly due to copying.