Commit Graph

56 Commits (49b5b7272bbdc46801826714e57dec5f984fd722)

Author SHA1 Message Date
Sean Silva 3a890aa26c Miscellaneous changes while trying to work on ResNet18
- Move frontend lowering pipelines to c++ (this helps with reproducing
  failures in npcomp-opt)
- Add debugging printouts when compilation fails on RefBackendTestConfig

The experience now when a test fails during MLIR lowering is now like this:
```
NPCOMP TorchScript Object Graph IR -> NPCOMP Backend IR lowering failed with the following diagnostics:
failed to legalize operation 'torch.global_slot'
Module does not conform to npcomp's backend contract. See dialect conversion legality information above.

Error can be reproduced with:
$ npcomp-opt -torchscript-to-npcomp-backend-pipeline /tmp/ResNet18Module.mlir
```

And when TorchScript->MLIR import fails it looks like this:
```
PyTorch TorchScript module -> NPCOMP Object Graph IR import failed with the following diagnostics:
unhandled prim operation: %18 : int = prim::min(%17) # /usr/local/google/home/silvasean/.local/lib/python3.9/site-packages/torch/nn/functional.py:4532:4
```

Also,
- Add `--filter=<regex>` to e2e test harness to filter tests.
- Add a few prim ops that were needed to import ResNet18
- Fix torch.prim.Loop.condition assemblyFormat (it previously would not
  round-trip in the case of no loop-carried variables)
2021-04-27 11:51:11 -07:00
Sean Silva fef1733e12 Fix issue with unused functions in torch::jit::CompilationUnit
As described in the code comment:

```
When we import TorchScript IR, we import their entire "compilation unit",
which can contain numerous functions unrelated to the current program,
which breaks torch-globalization-pipeline; for example, there can be
random functions referencing types that haven't been imported
as part of the root `torch.nn.Module` we imported. Those will
be unreferenced private functions which symbol-dce will clean up nicely.
```

This situation is really easy to hit in jupyter notebooks, where the
same cell is evaluated multiple times. That results in the same
class name (at the Python level, e.g. class `Foo` in the top-level
main module). Internally to PyTorch, it handles this situation by
mangling in a unique number to the names of ClassType's and such. When
we import the new ClassType's, we see not just the new
torch::jit::Function's in the CompilationUnit, but, also all the old
ones, which reference ClassType's that are not reachable from the
`torch.nn.Module` that we imported.

Note: there is no way to avoid importing the whole CompilationUnit
(including these old remnants) without doing a fairly complicated call
graph reachability analysis of which functions are reachable from the
methods of the ClassType's we imported. It turns out that once we are
inside MLIR, we model visibility correctly so that `symbol-dce`
"Just Works" for this use case. That is to say, this is not a quick
hack, but rather seems like a totally palatable long-term solution.
2021-04-20 12:00:35 -07:00
Sean Silva c4123d4d4d Add npcomp-verify-backend-contract pass.
This pass verifies that a given module satisfies the contract that we
have for backends. This is phrased as an "allowlist", because we want to
keep this interface tight. Also, this gives much better diagnostics than
a backend randomly crashing or failing to compile would (though they
could still be improved).

This was especially painful because if we had
`tensor<?x!numpy.any_dtype>` slip through, at some point RefBackend
would convert it to a memref type and trip the "verify type invariants"
assertion which gives no location or anything and crashed the process,
which was very unpleasant.

We implement this with the dialect conversion framework, which works
reasonably well and was quick to put together and familiar, but is still
very "op oriented". We probably want to make this hand-rolled
eventually, especially the error reporting (the most useful kind of
error for a dialect conversion user is not necessarily the best for this
use case). Also, in production, these error will go to users, and need
to be surfaced carefully such as "the compiler needs a type annotation
on this function parameter" which in general requires some special
analysis, wordsmithing, and overall awareness of the e2e use case (such
as how much we can lean into certain source locations) to provide a
meaningful user-level diagnostic.

Also, add `inline` to the current frontend lowering pass pipeline to
allow slightly more complicated programs that otherwise would fail on
shape inference.
2021-04-20 12:00:35 -07:00
Sean Silva f5dfa02523 Add `aten.mm` to linalg lowering.
This is our first op with error semantics, and stresses the system.

There are a few design notes of special interest:
- RefineTypes.cpp's note about shape inference in the presence of code
  that dynamically produces and error, and it is provable statically.
- ATenToLinalg.cpp's notes about future automation of the ATen->linalg
  path.
- The notes in Passes.td about using low-tech `std.assert` ops instead
  of `shape.assuming`.

Note: Doesn't work on IREE yet due to the `std.assert` op (needs to be
lowered to `vm.fail` on the IREE side).
2021-04-16 12:03:31 -07:00
Sean Silva 28a0f02746 Add support for compiling through IREE.
Recommended review order:
- Changes in frontends/pytorch/examples/
- Changes in python/npcomp/compiler/pytorch/backend/
- Boilerplate for the `npcomp-iree-backend-lower-linkage` pass.

This change separates out a
`npcomp.compiler.pytorch.backend.frontend_lowering` module that does the
common lowering for all backends. The individual compiler backends
`npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely
defined "TCP + scalar code" IR mix that will be formalized in the
future as the interface to codegen backends.

This also required adding a small pass
`npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto
functions, and layering that into the frontend flow. The pass doesn't
require a C++-level dependency on IREE, which is nice for now. TBD how
we are going to handle lists (we hope we can get away with sneakerneting
some td files and relying on loose IR compatibility).

Running through IREE requires the ability to import `iree.compiler` and
`iree.runtime`, which can be obtained as follows:
```
python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200
PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/"
```

This patch makes it painfully clear that we don't have any e2e testing
harness to really plug into, and also don't have a usable Python API to
our compiler stack (something usable in a jupyter notebook).
That will be addressed in subsequent commits. We've been flying by the
seat of our pants with this `examples` directory that isn't subject to
any kind of testing or real usability concerns.
2021-04-09 13:15:07 -07:00
Sean Silva 2ab62aec12 MILESTONE: TorchScript unary tanh runs on RefBackend
This revamps the TORCH_TO_TCF_PASSES to reflect the new layering that we
are doing in the compiler. See comments there for the layering.

Also adds `frontends/pytorch/examples/torchscript_tanh_e2e.py` as an
"example". E2E testing story TBD (want to get IREE working first).
2021-04-07 11:06:34 -07:00
Sean Silva 30356c41c8 Add torch-adjust-calling-conventions pass.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).

Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
  (requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
  handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
2021-04-05 17:56:35 -07:00
Sean Silva 464feacba9 Bump llvm-project to 223dcdcfbe23affdf17ada7f023ee1872fd76160
- ModuleOp no longer has a terminator.
2021-04-05 17:56:35 -07:00
Sean Silva 7a4043b7c4 Add ability to compile from object graph ir. 2021-03-31 09:25:13 -07:00
Sean Silva 703428eff4 Add support for "trailing_" and "out" variants of various ops.
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.

This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).

This involved adding a new op `numpy.overwrite_array`.

```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```

This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.

Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
2021-03-19 10:34:50 -07:00
Stella Laurenzo 3f706473fd NFC: Delete npcomp python API and switch to upstream.
* Most updates are mechanical except:
  * python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
  * NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
  * PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
  * python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
  * mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
2021-01-08 10:46:24 -08:00
Phoenix Meadowlark 699bf5df45
Add cos_e2e.py, test_utils and support for tensor inputs (#134) 2020-11-24 19:02:50 -08:00
Stella Laurenzo 3937dd14cb Add basicpy.numeric_constant op.
* Going through TODOs on the PyTorch side, this is a big cause of them (not being able to have constants for signed/unsigned).
* Added complex while in here since we're at the phase where it is better to just have things complete than partially done.
2020-11-24 16:44:40 -08:00
Stella Laurenzo bea0af419d NFC: Prefactor some basicpy ops in advance of more type work.
* Organizes the BasicPyOps.td file by function.
* Renamed `to_boolean` -> `as_predicate_value` (trying to consistently use "predicate" to refer to i1/low-level types and Bool/Boolean to refer to Python bool types).
2020-11-24 15:49:37 -08:00
Sean Silva ec1336a8a3 Make pytorch/backend/refjit.py a bit tidier
- Print out initial PyTorch IR.
- Rename ambiguous "frontend IR" to "TCF IR".
- Add newlines to prints
- Rename FRONTEND_PASSES to TORCH_TO_TCF_PASSES
2020-11-20 17:21:24 -08:00
Stella Laurenzo a7ff87a922 Sever C++ level depend on IREE and rebase on exe and python interface.
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
2020-11-16 21:32:56 -08:00
Stella Laurenzo b4c7ae1e0c Repurpose numpy-compiler compiler/runtime flow for PyTorch.
* A bit gross because I took the chance to upgrade all of the backend bits to the new MLIR Python bindings and we still co-mingle the old and new for now.
* Since the Python created PassManagers are configured for explicit nesting, I had to upgrade some of the pass pipelines to be explicit.
* The demo in mul_maximum_e2e.py now compiles, runs through PyTorch and through the JIT, prints and asserts the same results.
* I am not claiming that this is the prettiest API in this patch: consider that this is just directly using low-level APIs and there should be an intervening high level API.
2020-11-11 10:38:13 -08:00
Stella Laurenzo d1488c8572 Move existing npcomp.compiler -> npcomp.compiler.numpy.
* Makes room for the pytorch compiler.
* Some common things can be hoisted from the numpy side but some more consolidation needs to happen first.
2020-11-10 19:26:40 -08:00
Stella Laurenzo 0356f65dcd Wire through codegen and runtime dependencies.
* Enables e2e test.
* With what I've learned in upstream about test directory layout, I can consolidate most of the separate directories we have for these things. Will do that in a followup.
* Not pleased with the LLVM global initialization depends but serviceable for now.
2020-07-10 22:57:26 -07:00
Stella Laurenzo 9e4a62fc71 Allow JITModule passes to be built separately.
* Re-introduces frontent/backend split.
* Adds a (very) trivial shape refinement pass.
2020-07-10 22:57:26 -07:00
Stella Laurenzo aea05d68d7 Initial python plumbing to interface with the refjit backend. 2020-07-10 22:57:26 -07:00
Stella Laurenzo 2d4b0843c1 Fix evaluation message reporting and add checks to tests. 2020-06-29 17:48:17 -07:00
Stella Laurenzo 7ca292ade5 Add partial evaluator for explicit numpy ufuncs.
* This enables emission of "numpy.add(a, b)" and several dozen others.
* Will deprecate original ufunc infra in a follow-on.
2020-06-29 15:27:39 -07:00
Stella Laurenzo 1024c508f8 Move numpy compiler support to new directory. 2020-06-29 13:02:34 -07:00
Stella Laurenzo a4f3ce1ed3 Add value coding for ndarray.
* This lets us import arrays from the outer environment, which is the first step to actually handling numpy ops.
2020-06-28 18:42:08 -07:00
Stella Laurenzo bccfd5f6fc Refactor environment.py into components.
* Creates a new top level Configuration class
* Adds a module for creating test configs, getting some hard coding out of core classes
2020-06-28 16:52:25 -07:00
Stella Laurenzo 7bd5733d38 Add "template function" ops and importer code.
* This starts to lay down the infra for reasoning about calls
* Adds the importer code to generate IR for function calls of compiler recognized static functions.
2020-06-26 18:36:36 -07:00
Stella Laurenzo e45287d83e Rename 'macro' nomenclature to 'partial eval'. 2020-06-26 13:50:51 -07:00
Stella Laurenzo dd6a4e638b Add macro facility and use it to enable module and namedtuple attribute resolution. 2020-06-25 23:11:32 -07:00
Stella Laurenzo e5958d820f Add constant resolution from globals and builtins. 2020-06-22 18:42:32 -07:00
Stella Laurenzo f791909a25 Factor name resolution and constant creation to a new environment facility. 2020-06-22 18:15:56 -07:00
Stella Laurenzo b3ecd57b29 Add a sample test that exercises short circuit control flow. 2020-06-19 17:25:18 -07:00
Stella Laurenzo b811db4b76 Wrap the IREE compiler flow in a one stop API. 2020-06-19 17:17:22 -07:00
Stella Laurenzo 529873d13c Wire up IREE compilation and runtime in a new backend test.
* Adds python bindings for invoking flow, HAL, and VM lowering pipelines.
* Adds pythong bindings for translating to VM module flatbuffer.
* Adds a new backend_test/iree directory and configure lit to find the IREE python rt bindings.
* Open code a simple_invoke.py that exercises the whole pipeline (need real APIs for a lot of this).
* Fails when invoking the function because I never implemented argument marshaling for scalars :(
* Plenty of stuff to do tomorrow.
2020-06-19 00:30:34 -07:00
Stella Laurenzo b21b5322f6 Basicpy conversion to IREE+std skeleton and first conversions.
* Conversions to std for numeric binary expressions, numeric to_boolean, and numeric comparisons.
* Added folders to constant ops to comply with requirements of the pass system.
* Extended the frontend with parameter/result annotation processing for primitives (can specify types for function arguments).
* Added (empty) directory/sources for IREEVM conversions. These are only enabled if IREE is enabled.
2020-06-13 23:45:43 -07:00
Stella Laurenzo 2ba8296151 Add script tools/format_source.sh and run it on all python and c++ sources. 2020-06-13 14:53:54 -07:00
Stella Laurenzo c3d4436397 Introduce a Target class and use it to define generic 32 and 64bit variants. 2020-06-13 14:43:10 -07:00
Stella Laurenzo 917fd94f94 Add limited support for function arguments. 2020-06-10 19:17:29 -07:00
Stella Laurenzo 6728503fcf Remove unused assignment 2020-06-09 18:35:21 -07:00
Stella Laurenzo 340f109742 Add implicit return and expression statements where the value id discarded. 2020-06-09 18:34:07 -07:00
Stella Laurenzo 2bb4cdf4e7 Split frontent.py into importer.py. 2020-06-09 17:16:36 -07:00
Stella Laurenzo 22cbe044c2 Add IfExp emission. 2020-06-09 17:10:52 -07:00
Stella Laurenzo e18e8e0a96 Add boolean/logical operations (and, or, not).
* Adds a new to_boolean op to evaluate a value as a truthy i1
* Uses cascading scf.if ops to properly evaluate and/or sequences (short-circuit and original value returning)
* Adds a helper to construct select ops and uses it to implement 'not'
2020-06-09 00:01:21 -07:00
Stella Laurenzo 44f7e22f4d Remove 2-arg compare special case and use common utility to do sub evaluation. 2020-06-08 17:54:14 -07:00
Stella Laurenzo 1ef3614682 Add support for short-circuit comparisons with scf.if. 2020-06-08 17:52:07 -07:00
Stella Laurenzo a32219c3bb Refactor things so that an SCF mixin dialect helper can be used.
* Makes the OpBuilder an input to the DialectHelper.
* The containment hierarchy can be simplified further.
* There are still only a few places this is instantiated, so opting for working over great.
2020-06-08 16:10:51 -07:00
Stella Laurenzo 85b724e70c Adds ODS and import support for binary_expr and binary_compare ops.
* Currently only supports non-short-circuit comparisons.
2020-06-08 13:46:06 -07:00
Stella Laurenzo 7c176ed872 Add None constants. 2020-06-07 16:21:00 -07:00
Stella Laurenzo 4cd604f2a2 Fix AST constant handling to be compatible with 3.8 (the right way). 2020-06-07 16:16:19 -07:00
Stella Laurenzo 72499e0319 Add bytes constants. 2020-06-07 16:00:29 -07:00