Commit Graph

13 Commits (4a0eb44d17d453a7dca8c5acf09fcc81bba90d69)

Author SHA1 Message Date
Sean Silva 9257457d8a Add AllowsTypeRefinement trait and use it to improve RefineTypes
This trait lets us model the semantics of various aten/torch/numpy ops
that are insensitive to type refinements. This replaces
hardcoded/inconsistent checks for this property.

To show usage of this new trait, we fix up some old uses, and improve
RefineTypes to be smarter about rewriting with this trait.
2021-04-30 10:57:02 -07:00
Sean Silva 6431b0f11f Add primitive ArrayToTensor (numpy-array-to-tensor) pass.
The current implementation is just sufficient to do a unary aten.tanh
from the e2e spike, and just applies some local rewrite patterns.  I've
sketched out the more full explanation of where this pass eventually
need to go in the pass docs.

Adding this required adding `numpy.tensor_static_info_cast`, which is
the tensor analog of `numpy.static_info_cast`. This op encapsulates the
same numpy-specific "no runtime code" casting semantics, in particular
the interpretation of `!numpy.any_dtype`. The
`numpy.tensor_static_info_cast` I see in practice now are "information
erasing" and will be removed by a later pass that exploits the fact that
aten ops are agnostic to the static info in the operand types (so
substituting a type with more static info is fine).

Side note: we *need* to do dtype and rank inference before aten->tcf
(which will eventually mostly be aten->linalg+guards), because each aten
op is idiosyncratically overloaded based on dtype and rank. Without
copying that idiosyncratic overloading into lower layers (layering
violation), we cannot really lower it to anything until we do that.
2021-04-05 17:56:35 -07:00
Sean Silva 30356c41c8 Add torch-adjust-calling-conventions pass.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).

Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
  (requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
  handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
2021-04-05 17:56:35 -07:00
Sean Silva 703428eff4 Add support for "trailing_" and "out" variants of various ops.
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.

This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).

This involved adding a new op `numpy.overwrite_array`.

```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```

This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.

Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
2021-03-19 10:34:50 -07:00
Stella Laurenzo 3f706473fd NFC: Delete npcomp python API and switch to upstream.
* Most updates are mechanical except:
  * python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
  * NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
  * PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
  * python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
  * mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
2021-01-08 10:46:24 -08:00
Stella Laurenzo 5aa2f0f9f6 Add a trivial copy elision canonicalization on ndarray->tensor.
* This elides the very common code the compiler adds for chaining otherwise tensor-related numpy ops together.
* More aggressive canonicalizations would require more advanced analysis.
2020-07-05 18:09:43 -07:00
Stella Laurenzo 051d088161 NFC: Move CPA typing analysis down a directory. 2020-07-04 16:40:02 -07:00
Stella Laurenzo 6a50efd046 Extend the CPA type inference to work on numpy types/ops.
* Adds an op interface for adding CPA constraints.
* Adds a type conversion hook for handling built-in types (that we can't have adopt our interface).
* Converts tensor<> to object(!Tensor, [e:<type>]) just like NdArray.
* Implement a few numpy ops far enough to do dtype inference for simple sequences.
2020-07-03 18:16:34 -07:00
Stella Laurenzo 046751254f Refactor old tracing tests and remove deprecated ops.
* Old doctests to run under lit.
* Old custom filecheck tests -> pytest directory (under lit).
* Rename some old ufunc ops in the tracer.
2020-06-29 16:19:03 -07:00
Stella Laurenzo 7ca292ade5 Add partial evaluator for explicit numpy ufuncs.
* This enables emission of "numpy.add(a, b)" and several dozen others.
* Will deprecate original ufunc infra in a follow-on.
2020-06-29 15:27:39 -07:00
Stella Laurenzo a4f3ce1ed3 Add value coding for ndarray.
* This lets us import arrays from the outer environment, which is the first step to actually handling numpy ops.
2020-06-28 18:42:08 -07:00
Stella Laurenzo f6721c173d Add create_array_from_tensor and copy_to_tensor ops. 2020-06-28 17:58:26 -07:00
Stella Laurenzo 432e01fe8f Move Basicpy and Numpy dialect IR to IR/ folder. 2020-06-09 19:22:24 -07:00