Commit Graph

39 Commits (4df1d8ae2f37d72e4a06bd4f862dc9a5c36d7c23)

Author SHA1 Message Date
Kan Chen 86b792520b
Fix the error of type casting in dynamo example (#1860) 2023-03-07 10:50:35 -06:00
Ashay Rane 711646d095
mhlo: migrate conversion to stablehlo (#1840)
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.

This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
2023-02-02 07:29:47 -06:00
Sean Silva 7731211d02 Remove eager_mode
This was an experimental attempt at rolling out own op-by-op executor
with `__torch_dispatch__`, but it proved difficult to make it robust.
Op-by-op execution is very easy to implement robustly now with the
PyTorch 2.0 stack, so we don't need eager_mode.

Downstream users were using eager_mode to implement lockstep numerical
accuracy debuggers. We implemented the same functionality with
TorchDynamo in https://github.com/llvm/torch-mlir/pull/1681 so now there
is not much reason to continue maintaining it.
2022-12-09 03:50:00 -08:00
Sean Silva b1f9e09f85 [torchdynamo] Add ResNet18 example with TorchDynamo
This is a minor variation on our other resnet18 examples swapping in
TorchDynamo.

We replicate the refbackend_torchdynamo_backend out of the e2e test
config to avoid making that appear like a public API.

Also, some minor cleanups to TorchDynamoTestConfig.
2022-12-07 09:25:27 -08:00
Henry Tu e869e68559
Fix LTC lib_torch_mlir_ltc.so import error (#1283)
* Build LTC to _mlir_libs directory

* Update CMakeLists.txt
2022-08-25 18:25:01 -04:00
武家伟 1106b9aeae
[MHLO] bert-tiny and resnet18 example from torchscript to mhlo (#1266)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
Co-authored-by: Vremold <xremold@gamil.com>
2022-08-23 16:44:36 -07:00
Henry Tu 47bb38d180 Reference Lazy Backend (#1045)
* Changed Example MLIR backend to Reference MLIR backend

* Moved reference_ltc_backend into csrc

* Merged sys_utils.h

* Renamed reference_ltc_backend to reference_lazy_backend

* Addressed review comments

* Update docs with new library name

* Removed _REFERENCE_LAZY_BACKEND from .gitignore

* Added reference_lazy_backend to the TorchMLIRPythonModules dependency list

Fixed typo in `ltc_examples.md`

Missed instance where `ltc_backend` was used instead of `lazy_backend`.
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim fb21c9e6cb Integrate Functionalization Pass (#998)
* Fix autogen build dir issue

* Got functionalization pass to compile

* Add slice/diagonal backwards functionalization

* Fix codegen invocation in CMakeLists.txt

* Add functionalization view ops

* Fix logsumexp out functionalization

* Fix ComputationPtr

* Blacklist new_empty op

* Add op comparison

* Remove unnecessary ops

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu 0cee0dc978 Only import the LTC backend that's used (#939) 2022-07-30 09:40:02 -04:00
Henry Tu dfcc26556a Added e2e LTC tests (#916)
* Added e2e LTC Torch MLIR tests

* Fix seed for reproducability

* Check if computation is None before getting debug string

* Updated unit tests, and added numeric tests

* Print name of the model layer that fails numeric validation

* Run LTC e2e test with CI/CD

* Set seed in main function, instead of beginning of execution

* Add comment to specify number of digits of precision

* Fixed typo

* Remove tests for LTC example models

* Added LTC option to torchscript e2e

* Implement compile and run for LTC e2e test

* xfail all tests that use ops that aren't currently supported
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim d9aee0d7a7 E2E HuggingFace Bert using LTC Backend (#912)
* Update native function definitions

* Add ops to support bert lowering

- Add empty_strided and as_strided

- Restore zeros_like to op blacklist (Without this, tensors will be unintentionally created with a CPU device rather than lazy)

- Check for composite implicit ops and add device data IR

- Also fix codegen for functionalization

* Add autogen to CMakeList

* Remove PyTorch submodule

* Reduced BERT model size

* Print Mark Step status in Torch MLIR LTC debug string

* Apply fixes to work with latest upstream/main

- Pass importOptions into getMlirTypeFromTorchType during NodeImporter::importNode

  Without this, the tensor type created may have a mismatched type as ImportOptions may cause vtensor to be used instead of tensor

* Update shape inference functions

- Fixed compute_shape_native_batch_norm when mean and var are uninitialized

  Previously, the number of shapes returned would be <3 if either mean or val was didn't exist. Instead, we now initialize them with a vector matching the number of channels.

- Implemented compute_shape_mul

- Fixed bug in reshape shape inference error message

* Get MLIR backend more consistent with TS backend

- Remove LazyNativeFunctions::_unsafe_view from autogen

- Blacklist ops to make JIT graph more like output of TS backend

- Print graph when SSA value has mismatch of types and results

- Remove normalize_index from LazyShapeInference

- Fix seeds for LTC example models

* Update and clean up shape inference functions

- Prune shape inference functions

- Add shape inference function for GenerateSlice

- Add shape inference function for GenerateCopy

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu de5b380143 Bert example and relevant shape inference functions (#831) 2022-07-30 09:40:02 -04:00
Henry Tu 406d1e7538 Use JIT GraphExecutor for execution in example backend (#830)
* Update LazyShapeInference header

* Use JIT GraphExecutor for execution in example backend
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 1bde00c73d Fix LTC Decoupling (#815)
* Initial changes

* Fix up native functions

* Further fix decoupling

* Remove unnecessary ops

* Formatting and copyright banners:

* Add pytorch submodule
2022-07-30 09:40:02 -04:00
Antonio Kim 615ff1d31c Generate MLIR with shape information via LTC frontend (#742) 2022-07-30 09:40:02 -04:00
Henry Tu a605fe279c Add example Torch MLIR LTC Backend (#725) 2022-07-30 09:40:02 -04:00
Sean Silva 93f1c3138b torch_mlir.compile: Allow OutputType as a string.
A lot of code was super verbose with `torch_mlir.OutputType.XYZ`. Now,
you can simply do `"xyz"`. I updated a few examples.
2022-07-08 17:37:27 -07:00
Sean Silva 075464fa74 Add a new `torch_mlir.compile` method.
This makes it much easier to convert models and hides all the
ClassAnnotator complexity.

This also adds a new example `torchscript_resnet18_all_output_types.py`
which shows the ResNet18 IR for all output types.

Also,

- This moves `run_pipeline_with_repro_report` to
  `torch_mlir.compiler_utils`.
2022-04-20 10:06:01 -07:00
Maksim Levental eecbf0bab6
Eager mode description in the README and small example and ResNet18 example. (#707) 2022-03-28 23:54:06 -05:00
Sean Silva 1960ba76fb Remove "e2e" name from `examples/torchscript_resnet18_e2e.py`
That was back from an earlier stage in the project when e2e was a big
deal because we didn't have anything working e2e yet :)
2022-03-28 18:26:54 +00:00
Sean Silva e59a91620a Tidy up README and examples
- update diagram to use the name "Eager Mode" instead of
  `torch.dispatch`, which wasn't a very accurate name
- rename `resnet_inference.ipynb` to
  `torchscript_resnet_inference.ipynb` - this is in preparation to LTC
  and Eager Mode versions
- remove mention of TorchFX - turns out that all TorchFX modules are
  actually scriptable modules, so there is literally "zero code" vs
  using the TorchScript path
- remove LazyTensorCore example, and instead point at the current
  in-development `torch_mlir_ltc_backend` branch.

Note: there were actually some pretty useful utilities built out in the
examples directory, but they now live inside the Eager Mode
`python/torch_mlir/eager_mode/ir_building.py` (and need to be rolled
into a proper home with the upcoming rewrite of our top-level
`torch_mlir.compile` API).
2022-03-28 10:05:58 -07:00
Vigilans 63fb1e5aad Bump LLVM at 8361c5da30588d3d4a48eae648f53be1feb5cfad 2022-03-18 13:16:14 -04:00
Ramiro Leal-Cavazos 029c30c060
Fix typo in lazytensor example passes (#385) 2021-10-27 12:40:40 -07:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
Sean Silva b01f579687 Missing newline in notebook. 2021-10-04 17:53:46 +00:00
Sean Silva 4ab23261ba Fix notebook after relicensing.
The find/replace mangled it.
2021-10-04 17:52:12 +00:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Ramiro Leal-Cavazos 25a2c8bd85 Add notes on missing lazy tensor ops for ResNet18 and MaskRCNN 2021-09-30 16:38:12 -07:00
Ramiro Leal-Cavazos 3aef3a9e30 Remove duplicate example + fix README typo 2021-09-30 13:23:25 -07:00
Sean Silva bc62a7fbf3 Update to new name of torchscript-module-to-linalg-on-tensors-backend-pipeline 2021-09-30 19:46:05 +00:00
Sean Silva 8b2c099914 Update llvm-project to 204d301bb1921431a853c0bfba32007c018df1d5
This brings in the fix for the obscure RefBackend bug we were hitting.
2021-09-28 17:38:10 -07:00
Ramiro Leal-Cavazos b59f2cb673
Implement the lazytensor package (#331)
Implement the `lazytensor` python package for converting
lazy computations captured by the Lazy Tensor Core into MLIR.
This PR also fixes a few things with `torchfx` and its example
2021-09-28 17:25:06 -07:00
Sean Silva 64ce5d54d3 Update examples.
TorchFX example has been simplified, since it seems to be hitting that
weird RefBackend bug. Will dig into that.
2021-09-27 17:20:50 -07:00
Yi Zhang aa10ec66a7 Fix torchscript_resnet18_e2e.py and resnet_inference.ipynb
Fix the tests to run with refbackend.
2021-09-27 13:03:54 -04:00
Ramiro Leal-Cavazos 2b18aad807 Removed import typo in torchfx example 2021-09-22 16:49:46 -07:00
Sean Silva 1a0b953ea7 Eliminate almost all mentions of IREE.
A few remain in examples/docs that will be naturally be updated in due
time.

This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
2021-09-22 16:06:38 -07:00
Sean Silva 8779d920b2 Remove "refjit" terminology.
We now use RefBackend/refbackend consistently.
2021-09-22 15:41:23 -07:00
Ramiro Leal-Cavazos 1f00f95d2e
WIP implementation of torchfx (#304)
Implements a python package for taking a `torch.fx.GraphModule`
and turning it into MLIR in the `torch` dialect that can then
be further compiled by `npcomp`. This is a WIP, so the coverage
of PyTorch operations is very small.
2021-09-22 10:27:55 -07:00
Sean Silva 0eb767ea45 Remove frontends/pytorch directory.
It just contained the e2e testing framework. We now fold it into the
main project to reduce complexity.

- `frontends/pytorch/python/` -> `python/torch_support`
- `frontends/pytorch/e2e_testing -> e2e_testing`
- `frontends/pytorch/examples -> examples`
- `frontends/pytorch/test` -> `python/test`
- `torch_mlir_torchscript` python module -> `npcomp_torchscript`
- `torch_mlir_torchscript_e2e_test_configs` python module ->
  `npcomp_torchscript_e2e_test_configs`

This also changes the license of a handful of files from the
"pytorch-style" license to the regular LLVM/npcomp license. The only
people who committed to those files were myself and Yi.
2021-09-17 09:27:49 -07:00