Commit Graph

222 Commits (566650c5aef8c7c0e6743fcbe6eab09f181a8eeb)

Author SHA1 Message Date
Vivek Khandelwal 769f3a8870 [MLIR][TORCH] Add E2E support for max_pool2d_with_indices op
This commit adds lowering of `max_pool2d_with_indices` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-18 21:05:19 +05:30
Ashay Rane a893c7d5cf
Add shape transfer function and lowering to linalg for aten.neg (#759)
* shape: add shape transfer function for aten.neg

Prior to this patch, the list of shape transfer functions did not
include `aten.neg`, which resulted in errors like below.

```
error: unsupported by backend lowering: tensor with unknown rank or dtype
note: see current operation: %0 = "torch.aten.neg"(%arg0) :
  (!torch.vtensor<[256,256],f32>) -> !torch.vtensor<*,f32>
note: this is likely due to a missing shape transfer function in shape_lib_gen.py
```

This patch fixes the problem by adding a shape transfer function to
reflect the point-wise nature of this operation.

* linalg: add translation of aten.neg operation

This patch adds a translation rule to lower `aten.neg` operations on
tensors to an `arith.negf` operation wrapped inside a `linalg.generic`
operation.  This patch also adds a rudimentary test.
2022-04-15 11:11:22 -07:00
Vivek Khandelwal 1bccb4fc8a [MLIR][TORCH] Add E2E support for aten::max_pool2d_with_indices_backward op
This commit adds lowering of `aten::max_pool2d_with_indices_backward` op.

This commit also fixes formatting issues in basic.py.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-14 21:46:47 +05:30
gpetters94 9ec0683e92
Add 2D case for convolution (#693) 2022-04-08 00:47:57 -04:00
Prashant Kumar 1d5b5a89e8 [LINALG] Add torch.layout information
torch.layout information has been added.
2022-04-07 20:47:49 +05:30
Prashant Kumar fb8cb0c5f3 [LINALG] Add the lowering of `aten.ne.Scalar` op
The lowering of `aten.ne.Scalar` op has been added to
the linalg backend.
2022-04-05 21:07:28 +05:30
Ramiro Leal-Cavazos 5620fe030e
Add 1D, weight, and reduction support to nll_loss_backward (#729)
This commit adds the following support to the op `nll_loss_backward`:
- `input` tensor can be rank-1
- `weight` parameter
- `reduction` parameter
- `target`, `grad_output`, `total_weight` can be rank-0
- Checks that input tensors are of the expected type
2022-04-04 10:57:49 -07:00
Ramiro Leal-Cavazos 51d4d55f8a
Add support for multi-dim input to `index_put_impl` (#722)
This commit adds support for multi-dimensional tensors as input to the
`_index_put_impl_` op. The support was to some degree already there,
since `ScatterOp` already supports multi-dimensional tensors. This
commit also adds a bit more error checking to `index_put` and
refactors the code for creating `ScatterOp`s to mimic the way one
would make a `Linalg::GenericOp`.
2022-03-31 09:27:21 -07:00
Anup Gangwar ccf924d3df
tosa] Support for Aten[Gelu|GeluBackward] ops (#720)
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2022-03-30 17:00:55 -07:00
Vivek Khandelwal 2597c481f6 [MLIR][TORCH] Add E2E support for aten.new_empty op
This commit decomposes `aten.new_empty` op into `aten.empty.memory_format` op.

This commit also made a dtype fix to the constant tensor allocation like ops.
Earlier the dtype for the result was inferred from the result type; now, it's
being evaluated as per the original definition of the op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-30 13:21:01 +05:30
Sean Silva 520725cdc5 Fix bad rename from "pseudo" to "valsem". 2022-03-28 20:40:42 +00:00
Anup Gangwar 5d7a6c2976
[tosa] Support for Aten[Unsqueeze|Contiguous|Dropout|Reshape|View] ops (#700) 2022-03-25 14:15:07 -07:00
Vivek Khandelwal 88c216da13 [MLIR][TORCH] Add support for same input and output shapes for view op
This commit adds support for the cases of view op where the rank and
the shapes of the input and result are equal.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-25 22:26:10 +05:30
Ramiro Leal-Cavazos e966112c8d
Add final cast to TorchToLinalg conversions missing it (#692)
In order to make sure that the TorchToLinalg conversions leave the
graph in a valid state, the final result of the conversion has to be
casted to the result type of the op. This commit adds this cast to ops
that did not have it.
2022-03-23 13:52:32 -07:00
Qiang Fu f7c7bb800c
Add non-default dtype support for a few elementwise math ops. (#687)
* fix type inference
* fix Torch2Linalg conversion
* add test cases
2022-03-23 13:35:43 -07:00
Gaurav Shukla 7c3ba25238 [LINALG] Add decomposition of `aten.dropout` op
- This commit adds decomposition of `aten.dropout` op. It also covers the
  training mode of the same op.
- It also adds lowering of `aten.sub.float` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-03-22 13:14:49 +05:30
Vivek Khandelwal 13383b03b8 [MLIR][TORCH] Add value tensor variant to aten::copy_ op
This commit adds the op `ValsemVariantAtenCopyOp` that represents
`AtenCopy_Op` without the underscore. This is needed to make sure
that the `ReduceOpVariants` pass turns the in-place op into an op
that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenCopyOp`.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-21 19:12:37 +05:30
Vigilans 63fb1e5aad Bump LLVM at 8361c5da30588d3d4a48eae648f53be1feb5cfad 2022-03-18 13:16:14 -04:00
Prateek Gupta 7256c9e395 [TORCH][MLIR] Fix the return types of `aten.native_layer_norm`.
This commit fixes the 2nd and 3rd return types of the `aten.native_layer_norm`.
Previously the mean and rSTD were returned with reduction dims removed.
This commit fixes this and keeps the reduction dims of the results.

Signed-Off-By: Prateek Gupta <prateek@nord-labs.com>
2022-03-17 12:08:32 +05:30
Vivek Khandelwal 3d95c3d6c9 [MLIR][TORCH] Add value tensor variant to aten::_index_put_impl_
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.

This commit also updates the `torch.bincount` op test cases.
2022-03-16 22:02:02 +05:30
Sean Silva 92da4988f0 Improve "pseudo" op terminology.
The term "pseudo" is very vague and was getting confusing (I felt I had
to explain it in every comment referencing it). Instead, rework the
"pseudo" ops to instead be named:

- MLIR Syntax: `torch.valsem.*`
- C++ / ODS: `ValsemVariant*Op`

This makes it clear what the concept is, and avoids confusion with other
things that might be called "pseudo", since these are very specific and
should be 100% consistently named w.r.t. the non-valsem-variant ops that
they correspond to.
2022-03-15 17:57:52 -07:00
Sean Silva 5d9222383c Split up TorchToLinalg.cpp
This helps keep things organized and also exposes more parallelism to
the build system. It seems though that most of the compile time is
actually spent in the headers though, so the wall time doesn't decrease
as much as I had hoped (and now that the headers are being included
multiple times, the cpu time actually increases a lot, sadly -- will try
to dig into this).
2022-03-14 10:19:41 -07:00
Prateek Gupta 3d9ba5e525 [MLIR][TORCH] Add E2E support for aten.erf op.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
2022-03-09 22:22:03 +05:30
Vivek Khandelwal 1a2a9e066f [MLIR][TORCH] Add TorchToTMTensor pass
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.

Also add torch.bincount op lowering with the help of TMTensor dialect

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-08 22:52:34 +05:30
Vivek Khandelwal b2952b12dd [MLIR][TORCH] Move common helper functions to Utils.cpp
This commit moves the helper function which are common across
different torch-mlir conversion passes into a common directory
Utils.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-08 22:52:34 +05:30
Vivek Khandelwal bf463d1f36 [MLIR][TORCH]Add support for integer-type inputs for sum and max op
This commit adds support for integer type inputs for
`AtenMaxOp`, `AtenSumOp`, `AtenSumDimIntListOp`.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-03-08 22:52:34 +05:30
Ramiro Leal-Cavazos 5ec70c175d
[LINALG] Add torch-to-linalg lowering for `TensorStaticInfoCastOp` (#634)
This commit adds a lowering for `TensorStaicInfoCastOp` that simply
replaces the op with the `tensor::CastOp`.
2022-03-02 13:35:26 -08:00
Ramiro Leal-Cavazos 298eeb79ca
[LINALG] Add handling of unknown dimension in size list of `view` op (#633)
The view op allows for the new shape argument to have a -1 value for
one of the dimensions, and the op is expected to deduce the size of
that dimension by looking at the sizes of the other dimensions and
comparing it to the total number of elements in the original
tensor. This commit adds this functionality.
2022-03-02 13:35:01 -08:00
Yi Zhang 1d285f0153 Add aten.hardtanh e2e support. 2022-03-02 12:28:06 -05:00
Ramiro Leal-Cavazos 1dba4fcbd7
[LINALG] Support for contiguous memory format in `clone` and `empty` (#628)
This commit adds support for the contiguous memory format for the ops
`AtenCloneOp` and `AtenEmptyMemoryFormatOp`.
2022-02-28 13:58:04 -08:00
Ramiro Leal-Cavazos 58abec5c0a
Add `reduction` support to `torch.nll_loss_forward` (#624)
This commit does a couple of things. First, it fixes a bug in the
`linalg.generic` body of the `nll_loss_forward` lowering where the
`ignoreIndex` was being compared with the loop index rather than the
current element of the `target` tensor. This was not being caught by
the tests because they were not testing the case where `ingnoreIndex`
actually corresponds to a value in `target`. This has been fixed.

Second, this commit adds support for the `reduction` argument in
`torch.nll_loss_forward` as well as support for 1-D inputs. In order
to simplify the lowering code, I've refactored the code that creates
the `linalg.generic` ops for elementwise and reduction ops into static
functions, to avoid having boilerplate code for indexing maps, etc
that can be very error prone.

Note: The function `convertScalarToDtype` was moved to before all the
conversion patterns, but nothing in it was modified.
2022-02-28 11:01:23 -08:00
Gaurav Shukla 056cd2078d Revert "[LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`"
This reverts commit 442ff4605c.
2022-02-25 15:46:55 +05:30
Prashant Kumar abbde7d439 [TORCH] The torch definition related to aten.gelu has changed.
New str argument approximation is added.
2022-02-18 21:57:46 +05:30
Nirvedh f8cb32faf0 LLVM bump
Major changes: opTrait changed to Trait, selectOp moved to arith dialect
assertOp moved to cf dialect
2022-02-16 15:28:13 -05:00
Gaurav Shukla 442ff4605c [LINALG] Decompose `aten.batch_norm` into `aten.native_batch_norm`
- This commit decomposes the `aten.batch_norm` op into the
  `aten.native_batch_norm` op, instead of lowering it to the
  `linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
  to make sure that the shape of the weight, bias, running_mean, and
  running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
  all the modules that are dependent on the `aten.native_batch_norm` op
  will fail and therefore they should be removed from the TOSA `passing`
  set.
- It also moves `checkNotNone` to utility.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-16 23:41:38 +05:30
Anup Gangwar c60468f141
[tosa] Support for Aten[Zeros|Ones|Fill_Scalar] ops (#604)
Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2022-02-16 09:53:51 -08:00
Ramiro Leal-Cavazos 00a6e9c1bb
[LINALG] Add value tensor variant to `fill_.Scalar` (#600)
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.

Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
2022-02-15 11:58:03 -08:00
Gaurav Shukla 41acde599b [LINALG] Add E2E support for `aten.[le|ge].Scalar` ops
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
  as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
  element-wise comparison ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-15 12:21:09 +05:30
Anup Gangwar dfc07d11d7
Fix compiler warning introduced in PR575 (#593) 2022-02-14 12:45:19 -08:00
Gaurav Shukla 78c7844c6c [LINALG] Add E2E support for `aten.eq.int` op
- This commit adds lowering of `aten.eq.int` op as a part of
  `convert-torch-to-std` pass.
- It also refactors the code for binary comparison ops lowering.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-15 01:37:35 +05:30
Gaurav Shukla f00d1686c8 [LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
- This commit adds lowering of `aten.Bool.Tensor` and
  `aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
  input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
  `aten.Float.Tensor` op, it folds to the scalar number.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-14 23:09:20 +05:30
Ramiro Leal-Cavazos 3dc7847348
[LINALG] Fix linalg generic result type argument in TorchToLinalg (#588)
Some of the lowerings use the result type obtained from the op itself
to tell the `linalg::GenericOp` what the type of the result should be
rather than using the type of the result tensor given to the
`linalg::GenericOp`. This becomes a problem when the result type of
the op has static size information and the result tensor used in
`linalg::GenericOp` has dynamic dimensions, for `linalg::GenericOp`
expects the result type to be equal to the type of the output tensor.

This commit replaces the use of the result type from the op itself
with the type of the result tensor passed to `linalg::GenericOp`.

In order to not create too many dynamic/static versions of the same
e2e test, e2e tests have only been added to the ops that currently
fail when used with static sizes.
2022-02-11 19:42:18 -08:00
Yi Zhang ce4d6d1f83 Remove hacky aten.select.int lowering code 2022-02-11 18:14:58 -05:00
Anup Gangwar 756b75fb2d
[tosa] Support for some ops and fix for Issue #532 (#575)
* [tosa] Support for AtenNe[Tensor|Scalar]Op, AtenLog2Op,
AtenBitwiseAndTensorOp, AtenSquareOp and AtenThresholdOp
* Fix for Issue #532 - Mixed input types for few ops and updated few
tests to use i32 instead of i64

Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>

Co-authored-by: Anup Gangwar <anup.gangwar@arm.com>
2022-02-11 12:30:02 -08:00
Ramiro Leal-Cavazos 9b89f8eb3f
[TORCH][MLIR] Add E2E support for aten.clone (#571)
This commit adds support for the aten.clone op.
2022-02-09 19:31:03 -08:00
Gaurav Shukla bd177bdfc7 [TORCH][MLIR] Add run-time assert support in Torch-dialect
- This commit adds `aten.assert` op in the Torch dialect.
- The `aten.assert` op is lowered to `mlir::Assert` op.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-09 12:03:01 -05:00
Prashant Kumar d4ea39b616 Convert bool to float or integer type.
Conversion of torch.bool tensor type to float and integer type is
handled.
2022-02-07 21:22:22 +05:30
Anup Gangwar f9f97ea184 * [tosa] Support for AtenNativeLayerNormOp
* [tosa] Support for AtenPermuteOp

Signed-off-by: Anup Gangwar <anup.gangwar@arm.com>
2022-02-04 14:46:31 -05:00
Prashant Kumar ccf546f14c Add aten::nll_loss_backward op
The lowering of aten::nll_loss_backward op has been added
from torch to linalg dialect. The changes has been made as
a part of -torch-convert-to-linalg pass.

Signed-off-by: Prashant Kumar prashant@nod-labs.com
2022-02-04 21:57:53 +05:30
Prashant Kumar 68acc8696e Modify softmax decomposition to be more numerically stable.
The softmax decomposition is modified according to https://github.com/pytorch/functorch/blob/main/functorch/_src/decompositions.pytorch
to account for numerical stability. Also, modified aten.argmax lowering
to handle negative dimension.
2022-02-03 21:20:36 +05:30