* None's out Device? args.
* Emits bool tensors if needed.
* Adds some stderr tracing to better see what is going on.
* Test case that exercises NLLLoss.
* This test case emits something for backward calculations but there are some issues still to be worked out, so that part is left out of the test case.
* Progress on #97
* Deletes prior code generator from previous attempt (moved some of it into this one).
* Renames old generated tablegen source to "Legacy".
* Generates ODS and import rules for most binary and unary arithmetic ops.
* Removes old generated ops and integration tests that were testing details of the prior setup.
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.
* Enables the conv2d fwd test and ResA (which are both small).
* Deletes resnet18 and vgg, which both run but generate output that crashes FileCheck and lit (or at least makes them take an eternity).
* Adds Basicpy List, Tuple, Dict types and plumbs through C API.
* Started debugging the issues around aten::conv2d capture, but a PyTorch bug is suspected.
* Was able to manually verify that the basic conv2d forward test captures correctly with a workaround.
* Need to resolve some printing issues upstream and move these tests to an integration test target (they take ~seconds to run).
* Now gets far enough to capture batch_norm.
* Has some issues still with in-place ops.
* Can materialize constants.
* Includes an upgrade to PyTorch nightly, which has important bug fixes for fallback and boxed kernel dispatch.
* Fixes#78, #79, #80.
* Will do more testing in a follow-up once further bugs are fixed that facilitate getting at the other features.
* Adds a trampoline/loader 'torch_mlir' module.
* Plumbs through the MLIR python Context and Module creation, interoping with the MLIR Python API (resolves TODO on creating with own context and accessing the module being built).
* Inter-module Python API interop is still a bit rough but workable via the capsule mechanism. Can be evolved later.
* Exports the frontends/pytorch python sources to the project python/ build directory.
* Requires D89294 to land.
* Also adds two lit tests to verify that all of our extensions load without fireworks, which is a good indication that the shared library deps are sane.
* Bumps llvm-project version to use D89167.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
* Had to stop short of modifying the function return signature because of a missing C-API upstream.
* Committing here is good enough for a test and will resolve the various TODOs about upstream APIs next.
* Adds at::Tensor -> MlirValue tracking.
* Adds conversions for tensor and scalar types to MLIR types.
* Adds npcomp C APIs for constructing custom types.
* Reworks pybind include so as to get Torch pybind helpers (needed to pass at::Tensor type from Python->C++).
* Uses the MLIR-C API since that will save us a lot of grief down the road (i.e. will give PyTorch and libMLIR/libNPCOMP the ability to skew version-wise).
* Quite a few TODOs and not yet populating the function in any way.
* Uses the new dispatcher API.
* Just prints to the console for the moment when an op is captured.
* Executes the op through the existing implementation.
* Exposes the op registry via a get_registered_ops method.
* Moves the aten dialect generation scripts in prep for integrating them with this facility.
* Includes pybind11 directly (for some reason using the pytorch helper header for this depends on a source file not in the image).
* Installs nnpack into the image.
* Installs new-clang and LLD and configures environment to use it (otherwise, link time is terrible).
* Fixes a gcc compile error (in the off chance you build with default gcc compiler).
* Tests are failing based on some dialect registration stuff that must not have been factored correctly. Will followup with a fix.
* Make code that depends on the legacy "type dispatch" mechanism optional.
* This code is fairly tied to a specific ~1.3 version and uses a legacy dispatch mechanism.
* Moving it and making it optional allows the project to build with PyTorch 1.6 and makes it possible for us to start building out a more modern interface mechanism in parallel.
* Some of the moved code will be brought back into the more modern path, but isolating it now lets this be done incrementally.
* Tests are left failing since the entire frontend is optional and the next step involves reworking the interface mechanism to get them to passing in both regimes.
* Fix a few bogons to get things building
* Add Dockerfile with pytorch
Also, I configure with:
-DCMAKE_PREFIX_PATH="/opt/pytorch/pytorch"
(which is where pytorch is installed in this container)
* Make a dep conditional.
Co-authored-by: stephenneuendorffer <stephen.neuendorffer@xilinx.com>
This patch adds a pytorch interface to npcomp. This interface is modeled
after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar
to a gpu device or the xla backend). Usage is intended to be something like:
dev = torch_mlir.mlir_device()
t0 = torch.randn((4,4), device=dev)
t1 = torch.randn((4,4), device=dev)
t2 = t0 + t1
t2_mlir = torch_mlir.get_mlir( t2 )
t2_cpu = t2.to('cpu')
In this case t2_cpu would contain the result of the computation, and t2_mlir
contains the mlir description of the computation. Note that this also
properly returns backward paths synthesized by pytorch. There are several
parts of this:
1) A tensor type (implemented by tensor.* and tensor_impl.*)
2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*)
3) a temporary IR (implemented by ir.cpp)
There is also a reference lowering directly from the ATen dialect to C
function calls consisting of two parts:
1) The driver that uses the IR to generate MLIR, run Passes and compile the
result using mlir::ExecutionEngine (implemented by jit.cpp and
mlir_gen.cpp)
2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations
are implemented by callbacks into the torch C++ libraries.
Some aspects of this are known to be less than optimal, in particular:
1) There's some function definitions that don't live in the file corresponding
to their declaration.
2) More aspects of this (e.g. the IR) seem like they should be automatically
generated.
3) It's unclear to me how much of the 'IR' is actually necessary, or whether
MLIR could be created on the fly.
Note that this code is licensed in a way similar to pytorch, with the
intention that eventually (when npcomp reaches some maturity) it should be
pushed there. (see frontends/pytorch/LICENSE) The code is also structured
much closer to the pytorch coding style than the LLVM coding style.