This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.
This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).
Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
imported as `torch.somens.someunqualname.someoverloadname` (skip the
last dotted part if the overload name is empty), OR, if we don't have
such an op registered, it is imported as
`torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
- The addition of the "overload name" is a critical element here, as
the `(ns,unqual,overload)` triple is unique, which solves a lot of
problems we were having.
- This involves having separate MLIR ops for the `trailing_` and
`.out` variants and all the different overloads. This seemed
necessary, because the set of overloads is so wild and varied and
unstructured. The previous design was leaning into some underlying
structure that just isn't there -- the default situation is
the "random overload that we want to manage on the MLIR side",
rather than that being an exception. E.g. `aten::ne` (not-equal)
has 21 overloads, only 4 of which are c10 dispatcher ops see
[gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
and the "out" variant is really called `.Tensor_out` instead of
`.out` as it frequently is for other ops.
- Rationale for all being in `torch` namespace: the set of operators
are so varied and unstructured that "dialect per namespace"
doesn't result in anything resembling the typical MLIR dialect
boundary expectations. We could maybe draw the boundary at
dispatcher ops vs non-dispatcher ops, but that doesn't seem to
really result in very much useful structure at this point in time.
- Note: within the torch operator registry, we effectively have a
mini-basicpy subdialect (already type-resolved), which is reasonably
structured.
- The existing Torch op interfaces are also removed -- now that we
track the overload name, we can losslessly find the original
operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
`ReduceOpVariantsPass` that keys off certain traits (and perhaps
eventually interfaces) to reduce variants of ops to a smaller set,
ideally operating on immutable tensors and using surrounding ops to
model the mutability/aliasing aspects.
- Note: `torch.ns.unqual.overload` ops allow both immutable and
mutable tensors (unlike the previous hard distinction in the common
case). This is a premonition for a future change that will introduce a
bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
"ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
It should look somewhat familiar, but the benefit of hindsight has
allowed a lot of simplifications.
The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).
Recommended review order:
- Start at some of the new import IR, e.g. in
`frontends/pytorch/test/node_import/prim.py`,
`frontends/pytorch/test/acap_export/test_export_add3.py`, and other
tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
and associated generated files:
- `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
- `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
`frontends/pytorch/csrc/builder`. Probably most interesting is the new
code in `torch_to_mlir_utils.cpp` that has the logic to create the
`torch.operator` ops or `torch.ns.unqual.overload` ops.
This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
Interestingly, TorchScript has its own op (`torch::jit::Operator`)
registry separate from the dispatcher (it is a superset of the
dispatcher).
This is where the "prim" ops and some "aten" ops (that should probably
be renamed to "prim") live. In particular, `aten::__is__` is in that
latter category of "aten but really prim". This registry is also the
source of truth for what the TorchScript interpreter calls into when it
executes.
The bulk of the "not part of the dispatcher" ops live in
09feb5f579/torch/csrc/jit/runtime/register_prim_ops.cpp (L82)
And the registry itself lives in:
09feb5f579/torch/csrc/jit/runtime/operator.cpp (L196)
This fold further reduces the IR of ResNet by folding away some
more not-taken branches. These not-taken branches in ResNet require
first-class handling of the list type which we don't yet have on any
backend.
This is our first op with error semantics, and stresses the system.
There are a few design notes of special interest:
- RefineTypes.cpp's note about shape inference in the presence of code
that dynamically produces and error, and it is provable statically.
- ATenToLinalg.cpp's notes about future automation of the ATen->linalg
path.
- The notes in Passes.td about using low-tech `std.assert` ops instead
of `shape.assuming`.
Note: Doesn't work on IREE yet due to the `std.assert` op (needs to be
lowered to `vm.fail` on the IREE side).
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
This involved adding a `tcp.splatted` op to splat a dynamically sized
init tensor. See rationale in TCPOps.td docs.
One interesting observation is that when lowering tcf.matmul to
linalg.matmul, we need to both 1) create the error checks and 2)
calculate a shape transfer function to create the init tensors.
Previously, 2) was deferred to bufferizing tcp.matmul later. I'm not
sure if this is a conflation of concerns or not. For now, it's not a big
burden.
* Conversions are very simple, suporting mul, maximum and add (alpha=1 only).
* Example added with pass pipeline needed to run.
* Much missing off of the golden path but sufficient for such simple cases.
It was previously going through this awkward route that prematurely
created linalg.generic ops, which was an annoying layering problem since
we can't compute a shape transfer function for linalg.generic in the
general case. Now we pass it through the same path as tcp.matmul, with
the shape transfer function being defined for tcp.add.
This also removed the need for TCPToLinalg (now deleted). The equivalent
of that is happening in lower-shaped-results-to-memref. One interesting
outcome of this: we're basically using linalg as a "Buffer TCP". We
might want to look into using named structured ops for more of TCP, but
that would be a big velocity hit since then any change to the ODS /
verification for those ops would be a change to the upstream structured
op ODS generator. After we have more experience defining this manually,
we should re-evaluate rebasing TCP on generated named linalg ops.
* Conversions to std for numeric binary expressions, numeric to_boolean, and numeric comparisons.
* Added folders to constant ops to comply with requirements of the pass system.
* Extended the frontend with parameter/result annotation processing for primitives (can specify types for function arguments).
* Added (empty) directory/sources for IREEVM conversions. These are only enabled if IREE is enabled.