* [TOSA] Fix conversion for depthwise convolutions
* Add e2e tests for depthwise and grouped convolutions
Co-authored-by: Lucas Camphausen <lucas.camphausen@iml.fraunhofer.de>
This commit updates the `llvm-project` and `mlir-hlo` submodules to
commits:
llvm-project: a3f2751f782f3cdc6ba4790488ec20163a40ac37
mlir-hlo: 97c7e4b4506c3a2441c923e592833f45da439009
Changes made:
- Rename `getSuccessorEntryOperands` with `getEntrySuccessorOperands`
and remove `operands` from
`getSuccessorRegions` (https://reviews.llvm.org/D157506)
- Make `TypeConverter` a `const` (https://reviews.llvm.org/D157601)
* [MLIR][TORCH] Fix aten.cumsum lowering for int32 input (#2351)
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
[Stablehlo] Add converter to stablehlo for aten.(Int,Float,Bool).Tensor op (#2340)
[Stablehlo] Add converter to stablehlo for aten.(Int,Float,Bool).Tensor op and configure crashing e2e sets for stablehlo backend.
update PyTorch version to 2.1.0.dev20230729 (#2354)
- torch version: 2.1.0.dev20230729
- torch commit hash: b638df0afb83572724032c824c64e481bb4499a0
- torchvision version: 0.16.0.dev20230729
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
update PyTorch version to 2.1.0.dev20230730 (#2356)
- torch version: 2.1.0.dev20230730
- torch commit hash: 0ff243ff350268cc98fe03fa6364375ee2824742
- torchvision version: 0.16.0.dev20230730
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
update PyTorch version to 2.1.0.dev20230731 (#2359)
- torch version: 2.1.0.dev20230731
- torch commit hash: 6298ac688f8caafe30d71ff2ea2e20fbb32065c7
- torchvision version: 0.16.0.dev20230731
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
LTC->MLIR Debug Info support (#1922)
* LTC->MLIR Debug Info support
* SW-95317 Propagate Lazy->Jit->MLIR scope name.
* Enhance location information based on op names
Currently, the location information attached to the ops just considers
the filename, line number and column number. Attaching operation name
would help identify the type of computation by just looking at the
profile of execution.
* Update locations logic; updated debug-info.py test
* Use {scope}/{op_name} format to track names by default
---------
Co-authored-by: Gleb Kazantaev <gleb.kazantaev@cerebras.net>
Co-authored-by: Mark Browning <mark@cerebras.net>
Co-authored-by: Vimal Patel <vimal@polymagelabs.com>
build: update llvm tag to 41895843
Summary of changes:
- Update tags
llvm: 41895843b5915bb78e9d02aa711fa10f7174db43
mhlo: 4726d31f7025da66de0dea709bd56c462edb83c2
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
update PyTorch version to 2.1.0.dev20230802 (#2366)
- torch version: 2.1.0.dev20230802
- torch commit hash: c89b16917755c2abbef7b6420e340baf9ae8089e
- torchvision version: 0.16.0.dev20230802
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
Change Python version from 3.10 to 3.11 in installation instructions (#2370)
Add CITATION file (#2371)
Add packaging as an install dependency (#2369)
Needed by `torch_mlir._version`. Resolves#2368.
[Torch Dialect] emit aten.masked_scatter and aten.masked_scatter_ op (#2358)
* [Torch Dialect] emit aten.masked_scatter and aten.masked_scatter_ op
update PyTorch version to 2.1.0.dev20230803 (#2372)
- torch version: 2.1.0.dev20230803
- torch commit hash: f89c73be3a3e8274d025ac46a33a780853841c9e
- torchvision version: 0.16.0.dev20230803
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
Prevent failed stable CI job from cancelling nightly jobs (#2373)
The CI jobs that use stable PyTorch are currently not required to pass
in order for a patch to get merged in `main`. This commit makes sure
that if a CI job for stable PyTorch fails, it does not cancel the
other required jobs.
[Torch Dialect] emit aten.tile op and decompose it into aten.repeat (#2355)
update
update xfail sets
update xfail_sets
update
fix xfail_sets
update:
update
update:
update
parent 22e88d523b1970b2e904eb5421d49d987a3d255e
author jianzhe.xiao <jianzhe.xiao@bytedance.com> 1691114110 +0800
committer jianzhe.xiao <jianzhe.xiao@bytedance.com> 1691114119 +0800
[Stablehlo] Add converter to stablehlo for aten.(Int,Float,Bool).Tensor op (#2340)
[Stablehlo] Add converter to stablehlo for aten.(Int,Float,Bool).Tensor op and configure crashing e2e sets for stablehlo backend.
update PyTorch version to 2.1.0.dev20230729 (#2354)
- torch version: 2.1.0.dev20230729
- torch commit hash: b638df0afb83572724032c824c64e481bb4499a0
- torchvision version: 0.16.0.dev20230729
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
update PyTorch version to 2.1.0.dev20230730 (#2356)
- torch version: 2.1.0.dev20230730
- torch commit hash: 0ff243ff350268cc98fe03fa6364375ee2824742
- torchvision version: 0.16.0.dev20230730
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
update PyTorch version to 2.1.0.dev20230731 (#2359)
- torch version: 2.1.0.dev20230731
- torch commit hash: 6298ac688f8caafe30d71ff2ea2e20fbb32065c7
- torchvision version: 0.16.0.dev20230731
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
LTC->MLIR Debug Info support (#1922)
* LTC->MLIR Debug Info support
* SW-95317 Propagate Lazy->Jit->MLIR scope name.
* Enhance location information based on op names
Currently, the location information attached to the ops just considers
the filename, line number and column number. Attaching operation name
would help identify the type of computation by just looking at the
profile of execution.
* Update locations logic; updated debug-info.py test
* Use {scope}/{op_name} format to track names by default
---------
Co-authored-by: Gleb Kazantaev <gleb.kazantaev@cerebras.net>
Co-authored-by: Mark Browning <mark@cerebras.net>
Co-authored-by: Vimal Patel <vimal@polymagelabs.com>
build: update llvm tag to 41895843
Summary of changes:
- Update tags
llvm: 41895843b5915bb78e9d02aa711fa10f7174db43
mhlo: 4726d31f7025da66de0dea709bd56c462edb83c2
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
update PyTorch version to 2.1.0.dev20230802 (#2366)
- torch version: 2.1.0.dev20230802
- torch commit hash: c89b16917755c2abbef7b6420e340baf9ae8089e
- torchvision version: 0.16.0.dev20230802
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
Change Python version from 3.10 to 3.11 in installation instructions (#2370)
Add CITATION file (#2371)
Add packaging as an install dependency (#2369)
Needed by `torch_mlir._version`. Resolves#2368.
[Torch Dialect] emit aten.masked_scatter and aten.masked_scatter_ op (#2358)
* [Torch Dialect] emit aten.masked_scatter and aten.masked_scatter_ op
update PyTorch version to 2.1.0.dev20230803 (#2372)
- torch version: 2.1.0.dev20230803
- torch commit hash: f89c73be3a3e8274d025ac46a33a780853841c9e
- torchvision version: 0.16.0.dev20230803
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
Prevent failed stable CI job from cancelling nightly jobs (#2373)
The CI jobs that use stable PyTorch are currently not required to pass
in order for a patch to get merged in `main`. This commit makes sure
that if a CI job for stable PyTorch fails, it does not cancel the
other required jobs.
[Torch Dialect] emit aten.tile op and decompose it into aten.repeat (#2355)
update
update xfail sets
update xfail_sets
update
fix xfail_sets
update:
update
update:
add support for adaptive_pool_id
update xfail sets
update xfail_sets
update
fix xfail_sets
update:
update:
* update
---------
Co-authored-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
It's actually fine to not check the rank of the indices, because the conversion anyways flattens the index tensor to be (1, numElements) before applying tosa::gather, and then anyways reshapes the output tensor to the output shape of the aten.embedding.
The implementation at this place was a remnent of the times the pipeline was
run only once.
Rely instead on the backend verification, after optimizations have had an
opportunity to resolve some uncertainties. (e.g. `!torch.optional`).
* RecomposeComplexOps: Remove dead slice op
* lib/Dialect/Torch/IR/TorchOps.cpp: Fold slice ops even when they are on non-value tensors
* lib/Conversion/TorchToTosa/TorchToTosa.cpp: Fix slice start/end out of range/none
* lib/Dialect/Torch/IR/TorchOps.cpp: AtenSliceTensorOp::fold: Fold slices that go from 0:int_max
* More tests for aten.split.Tensor
In PyTorch, the `NumberType` is equal to `Union[int, float,
complex]`. However, the abstract interpretation library was treating
the `NumberType` as `Union[int, float]`, resulting in type mismatches
when reifying certain dtype functions. This commit fixes the type
inconsistency by having the abstract interpretation functions take as
an input a `Union[int, float, complex]` for the ops that take
`!torch.number` inputs.
This commit adds the support for index.Tensor op when the index values
are negative. This commit wraps around the index values by checking
their values at run time.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
check the return type of the division to figure out whether to use
the floating point implementation of a division or to use the integer.
the issue rose from the fact that the inputs are all integer but the
result was casted to floating point. The conversion then chose to
use the integer implementation of division which is not legal in tosa
when all the inputs get casted to floating point.
fix(TorchToLinalg): AtenDivScalarOp
upcast self operand as well if applicable, the self operand must also
be casted to float as it can be an integer.
* add support for mhlo
* Add Test for torch.ne
* fix torch.ne shape/add static test case
* add support for static torch.ne
---------
Co-authored-by: root <root@n31-177-039.byted.org>
The `copy_` op being replaced by `RecomposeSliceCopy_` operates on a
subset of the tensor being mutated, while the `index_put` op being
used to replace the `copy_` op operates on the entire tensor being
mutated. This means that the result type of the `index_put` should be
the type of the input to `index_put` and we need to make sure that
`copy_` does not have users before replacing to avoid type conflicts.
This commit also fixes the result type used for the
`AtenArangeStartStepOp`, and an off-by-1 error when creating the
indices vector.
Lastly, this commit also clamps the `end` value from the slice to the
size of the dimension.
When `use_tracing=True` is used to import a model into Torch-MLIR,
several casts get inserted in the IR to bridge the untyped inputs and
outputs with the typed body of the computation. These casts create
extra aliases of tensors that cause the current analysis in
`maximize-value-semantics` to fail.
In particular, the `maximize-value-semantics` analysis assumes that the
only valid alias right after an overwrite is the overwritten
alias. So, if there is a use of a casted version of the overwritten
alias after the overwrite, the analysis fails.
This commit improves the analysis by identifying all cast-like aliases
of the overwritten alias and allowing such aliases to be used after an
overwrite.
Because this issue only arises when using tracing, it cannot be
currently tested e2e, so only lit test is added.
* Add AtenIndexTensor StableHlo support
* clean up
* Empty commit, trigger test
* try to debug hanging test
* fix segfulat
* fix bad include
---------
Co-authored-by: zhekun.zhang <zhekun.zhang@bytedance.com>
Lowering torch operations that allow different compatible data types
in its operands to tosa end up generating invalid tosa IR with mixed
data types. In tosa spec, certain operations (generally element-wise
operations) require all operands to have the same data type.
Add wrapper functions for those element-wise tosa ops to perform op
creation with type conversion if necessary.
This commit adds dtype functions for all the torch ops that did not
previously have one and removes the pass `RefineTypes`, since the
abstract interpretation library now takes care of all the dtype
propagation.
All dtype functions added are tested except for
- `aten.embedding`
- `aten._embedding_bag`
- `aten.embedding_bag`
These functions need a change to the testing framework to allow
specifying the actual data inside the tensor used for testing. I will
fix this in a follow up patch.
Co-authored-by: Jiahao Li <liplus17@163.com>
Add support for lowering torch.aten.cat to tosa.concat
* add support for aten cat to tosa
---------
Co-authored-by: yifei <y.zhou@xilinx.com>
Co-authored-by: Lisa Liu <lingl@xilinx.com>