Commit Graph

38 Commits (5f1b2ba3232181551cbe3c31b72c409de0d64bf4)

Author SHA1 Message Date
Sean Silva 370e3270ab Introduce `!torch.tensor` / `!torch.vtensor` types.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes.  The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:

```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```

This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".

At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.

Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
  creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
  touch -- we need to sort out the situation with !basicpy.BoolType
  there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
  semantics. We currently require this, as our backend contract does not
  currently allow us to even model the non-value-semantic case. Before,
  the value-semantic assumption was randomly injected in the middle of
  the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
  RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
  `!torch.vtensor` to `tensor` and use the dialect conversion infra.
  The overall conversion pipeline is set up following the best practices
  of the "Type Conversions the Not-So-Hard Way" talk. This required
  introducing `torch-func-builtin-tensorize` and
  `torch-finalizing-builtin-tensorize` passes analogous to the upstream
  bufferization passes with the corresponding names (mostly just
  copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
  lowering to std later in the pipeline, so we are gradually lessening
  our reliance on random std constant folding before we get to that
  point.

Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
  - Frontend changes.
  - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-06-10 10:56:48 -07:00
Sean Silva 9257457d8a Add AllowsTypeRefinement trait and use it to improve RefineTypes
This trait lets us model the semantics of various aten/torch/numpy ops
that are insensitive to type refinements. This replaces
hardcoded/inconsistent checks for this property.

To show usage of this new trait, we fix up some old uses, and improve
RefineTypes to be smarter about rewriting with this trait.
2021-04-30 10:57:02 -07:00
Sean Silva 544cb4ef54 Bump llvm-project to 484b6648fdd4b104eaf7a2504dd07b60af2c9f8d
- add_mlir_doc arg order
- fix some dependent dialects on passes that were now causing errors
- "encoding" attribute on mlirRankedTensorTypeGetChecked
2021-04-22 18:12:55 -07:00
Sean Silva 927546b3c5 Add RefinePublicReturn pass.
This pass allows shape information to be propagated to return types,
which is nontrivial and cannot be cleanly put anywhere else as it
changes the public ABI, which is a concern that we want to keep
concentrated in one place.
2021-04-07 11:06:34 -07:00
Sean Silva 6431b0f11f Add primitive ArrayToTensor (numpy-array-to-tensor) pass.
The current implementation is just sufficient to do a unary aten.tanh
from the e2e spike, and just applies some local rewrite patterns.  I've
sketched out the more full explanation of where this pass eventually
need to go in the pass docs.

Adding this required adding `numpy.tensor_static_info_cast`, which is
the tensor analog of `numpy.static_info_cast`. This op encapsulates the
same numpy-specific "no runtime code" casting semantics, in particular
the interpretation of `!numpy.any_dtype`. The
`numpy.tensor_static_info_cast` I see in practice now are "information
erasing" and will be removed by a later pass that exploits the fact that
aten ops are agnostic to the static info in the operand types (so
substituting a type with more static info is fine).

Side note: we *need* to do dtype and rank inference before aten->tcf
(which will eventually mostly be aten->linalg+guards), because each aten
op is idiosyncratically overloaded based on dtype and rank. Without
copying that idiosyncratic overloading into lower layers (layering
violation), we cannot really lower it to anything until we do that.
2021-04-05 17:56:35 -07:00
Sean Silva 30356c41c8 Add torch-adjust-calling-conventions pass.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).

Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
  (requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
  handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
2021-04-05 17:56:35 -07:00
Sean Silva 703428eff4 Add support for "trailing_" and "out" variants of various ops.
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.

This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).

This involved adding a new op `numpy.overwrite_array`.

```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```

This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.

Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
2021-03-19 10:34:50 -07:00
Sean Silva 6351474382 Bump llvm-project to bc556e5685c0f97e79fb7b3c6f15cc5062db8e36
- `let typeDesription` -> `let description`
- LLVMIntegerType -> IntegerType
2021-01-08 14:18:09 -08:00
Stella Laurenzo 3f706473fd NFC: Delete npcomp python API and switch to upstream.
* Most updates are mechanical except:
  * python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
  * NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
  * PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
  * python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
  * mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
2021-01-08 10:46:24 -08:00
Sean Silva b2077738ca Bump llvm-project to 444822d77a7fea28aa49edf24533c987efa1b2ee
Fixes:
- renames StandardTypes -> BuiltinTypes
- std.extract_element -> tensor.extract
2020-12-11 14:43:38 -08:00
Stella Laurenzo 9e52f6235b More progress on PyTorch acap device capture.
* Now gets far enough to capture batch_norm.
* Has some issues still with in-place ops.
* Can materialize constants.
* Includes an upgrade to PyTorch nightly, which has important bug fixes for fallback and boxed kernel dispatch.
* Fixes #78, #79, #80.
* Will do more testing in a follow-up once further bugs are fixed that facilitate getting at the other features.
2020-10-15 21:43:21 -07:00
Marius Brehler d62f8227c2
Bump LLVM to @7d1ed69 and fix namespace handling changed upstream.
* Bump LLVM to llvm/llvm-project@7d1ed69
* Bump MLIR-HLO to tensorflow/mlir-hlo@1880f87
* Adopt to MLIR's changed namespace handling
2020-09-16 15:52:15 -07:00
Stella Laurenzo 97d83f786a Bump submodule versions.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.

Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
  * Move dialect registration to tablegen.
  * Register the ListType in tablegen.
  * Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)

Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
2020-09-08 13:26:42 -07:00
Stella Laurenzo efbcf0aa44 Add NumpyPublicFunctionsToTensor pass.
* Rewrites public function signatures to operate on tensors (vs ndarray).
* Most of our backends presume immutable tensors at public function boundaries.
2020-07-08 22:51:54 -07:00
Stella Laurenzo 5aa2f0f9f6 Add a trivial copy elision canonicalization on ndarray->tensor.
* This elides the very common code the compiler adds for chaining otherwise tensor-related numpy ops together.
* More aggressive canonicalizations would require more advanced analysis.
2020-07-05 18:09:43 -07:00
Stella Laurenzo fae15ec5e7 Allow the ndarray type to carry a shape. 2020-07-05 17:34:03 -07:00
Stella Laurenzo 051d088161 NFC: Move CPA typing analysis down a directory. 2020-07-04 16:40:02 -07:00
Stella Laurenzo 6a50efd046 Extend the CPA type inference to work on numpy types/ops.
* Adds an op interface for adding CPA constraints.
* Adds a type conversion hook for handling built-in types (that we can't have adopt our interface).
* Converts tensor<> to object(!Tensor, [e:<type>]) just like NdArray.
* Implement a few numpy ops far enough to do dtype inference for simple sequences.
2020-07-03 18:16:34 -07:00
Stella Laurenzo 34861b18f4 Add NdArray type inference conversion. 2020-07-03 16:38:10 -07:00
Stella Laurenzo e1839a0d6b Bump llvm and iree versions.
* Gets us passed the upstream changes that enable type interfaces.
* Adds the ARM backend due to an implicit IREE dependency sneaking in for that (https://github.com/google/iree/issues/2401)
* Adds explicit TypeStorage to type base classes per upstream change.
2020-07-02 11:24:05 -07:00
Stella Laurenzo 046751254f Refactor old tracing tests and remove deprecated ops.
* Old doctests to run under lit.
* Old custom filecheck tests -> pytest directory (under lit).
* Rename some old ufunc ops in the tracer.
2020-06-29 16:19:03 -07:00
Stella Laurenzo 7ca292ade5 Add partial evaluator for explicit numpy ufuncs.
* This enables emission of "numpy.add(a, b)" and several dozen others.
* Will deprecate original ufunc infra in a follow-on.
2020-06-29 15:27:39 -07:00
Stella Laurenzo a4f3ce1ed3 Add value coding for ndarray.
* This lets us import arrays from the outer environment, which is the first step to actually handling numpy ops.
2020-06-28 18:42:08 -07:00
Stella Laurenzo f6721c173d Add create_array_from_tensor and copy_to_tensor ops. 2020-06-28 17:58:26 -07:00
Stella Laurenzo efe8915901 Add NdArrayType. 2020-06-28 17:37:20 -07:00
Stella Laurenzo 432e01fe8f Move Basicpy and Numpy dialect IR to IR/ folder. 2020-06-09 19:22:24 -07:00
Sean Silva 1fed1cb016 Update llvm-project to 753a21928413f8a7e76978cb1354e09150e114e0 2020-05-21 13:09:06 -07:00
Stella Laurenzo a91b0bfbe1 Add numpy.get_slice op and wire it up to the tracer. 2020-05-08 16:04:58 -07:00
Stella Laurenzo bc5ef81d68 Add basicpy.SlotObject type and ops to create/index into it.
* This is intended to provide low-level modeling for built-in objects.
* It is now possible to trace slice tuples (which are tuples of NoneType|EllipsisType|SlotObjectType<slice, ...>).
2020-05-05 18:16:01 -07:00
Stella Laurenzo bfd5fedba7 Add central registration for type ranges. 2020-05-05 14:16:39 -07:00
Stella Laurenzo ebb5bcf6af Handle np.transpose() and ndarray.T shortcut.
* Just the form without explicit permutation for now.
2020-05-04 16:20:36 -07:00
Stella Laurenzo a5f755d406 Implement __array_func__ hook and use it to trace np.dot.
* Creates an abstraction/registry around emitters (intended to generalize to AST compilation as well).
* Reworks ufuncs to use the same mechanism as array funcs.
* Adds the numpy.dot op.
2020-05-04 15:47:01 -07:00
Stella Laurenzo c89a35f97f Rework the poc tracer to be structured how intended. 2020-05-02 19:52:21 -07:00
Stella Laurenzo d3632af675 Add !numpy.any_dtype dialect type. 2020-04-29 18:20:42 -07:00
Stella Laurenzo b4425fe1d2 Add numpy.ufunc_call op. 2020-04-29 17:49:56 -07:00
Stella Laurenzo c4a192d5c9 Rename from npcomp::NUMPY to NPCOMP::numpy to follow IREE convention. 2020-04-29 17:10:10 -07:00
Stella Laurenzo e845db8a20 Add builtin_ufunc and generic_ufunc ops. 2020-04-28 23:51:54 -07:00
Stella Laurenzo d3b6e1767a Add stub numpy dialect. 2020-04-26 17:20:58 -07:00