Commit Graph

203 Commits (614b889dc698b6fe26e4443c17be589773083a52)

Author SHA1 Message Date
Sean Silva 30df2ec71b Add min/max/clamp support.
Part of #380

Also
- BoolType is not considered as Scalar
- e2e framework fixes for nan handling
- `tu.rand(..., low=, high=)` support
- delete unused variable (fix warning)
- Add IouOfModule from #380 to e2e test suite (this is a common
  calculation in vision models)

 Your branch is ahead of 'origin/main' by 1 commit.
2021-10-27 13:29:21 -07:00
Prashant Kumar 5009cbf55c Add lowering of aten.matmul op.
Lowering of `aten.matmul` op is added from torch to linalg dialect.
The different cases correspond to
https://pytorch.org/docs/stable/generated/torch.matmul.html.
TODO: Broadcasting in case of batch-matmul is yet to be taken care of.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-10-26 12:45:09 -04:00
Boian Petkantchin e276dbbaa6
Add aten::gelu lowering (#374)
* Print more exception info on error during test execution

* Fix formatting

* Add aten::gelu lowering

Co-authored-by: Boian Petkantchin <boian@nod-labs.com>
2021-10-25 16:16:01 -07:00
Yi Zhang abfaf8c577 Add aten.ne.bool to make CI pass 2021-10-21 14:45:41 -04:00
George Petterson 7c47b9a0c8 Formatting fix 2021-10-19 13:33:31 -04:00
George Petterson 8853dfbc74 Add broadcast 2021-10-19 13:33:31 -04:00
Yi Zhang a459e09ab7 E2e support for aten.softmax.int and aten.embedding
- Added a DecomposeComplexOps pass to decompose complex torchOps.
- Refactored `visitAtenArgmaxOp` and `visitAtenAnyDimOp` to
`visitReductionAlongDimIntOp`.
- Moved some helper functions into
torch-mlir/Dialect/Torch/Utils/Utils.h to be shared by multiple files.
- Added support for f64 tensor as argument and return types.
2021-10-18 17:57:45 -04:00
Yi Zhang 0902438882 Update llvm-project to a54f4eae0e1d0ef5adccdcf9f6c2b518dc1101aa
This brings in https://reviews.llvm.org/D110797. PRs that are in
progress will need to use scripts provided by
https://llvm.discourse.group/t/psa-removed-arithmetic-ops-from-standard/4455.
2021-10-18 13:36:42 -04:00
dan 7750d2173a add argmax lowering
Add argmax lowering from torch to linalg
2021-10-13 14:31:16 -04:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
Yi Zhang 98ba255288 E2e support for layernorm. 2021-10-04 14:15:13 -04:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Yi Zhang 89225b0cd8 Add BertSequenceClassification model to e2e
Use torch tracing to get the module because the original model is not
TorchScriptable out of box.
2021-09-30 13:30:29 -04:00
Ramiro Leal-Cavazos b59f2cb673
Implement the lazytensor package (#331)
Implement the `lazytensor` python package for converting
lazy computations captured by the Lazy Tensor Core into MLIR.
This PR also fixes a few things with `torchfx` and its example
2021-09-28 17:25:06 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva a99cbeeb7e Move TorchConversion dialect and TorchTo* into torch-mlir 2021-09-23 21:39:31 -07:00
Sean Silva 2213584c4f VerifyBackendContract -> VerifyLinalgOnTensorsBackendContract
This moves it into TorchConversion since it is only needed there.

This removes the Backend/ directory.
2021-09-23 21:39:31 -07:00
Yi Zhang 603e068e45 E2e implementation for `aten.cat`,`aten.gather`, `aten.bmm`
Also contains the following changes:
- Remove derefineOp canonicalizer because it's not safe.
- Support for optional tensor and list tensors in reduceOpVariant. This
only works for some special detected and easy to handle cases. For list,
it covers the case list is got from a `ListConstruct`. For optional, it
covers the case optional is constructed from a `DerefineOp`.
- Remove the `inferReturnTypes` for `FromBuiltinTensorOp` because it's
not safe to deduce types from the input. For example, a built-in tensor
of i8 could be converted to si8 or ui8. It's better to let the user
specify the return type explicitly.
2021-09-22 19:15:01 -04:00
Sean Silva 1a0b953ea7 Eliminate almost all mentions of IREE.
A few remain in examples/docs that will be naturally be updated in due
time.

This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
2021-09-22 16:06:38 -07:00
Sean Silva a25163fbfa Remove old RefBackend
It is superceded by the new one.
2021-09-22 15:33:28 -07:00
Sean Silva f9c48d0b89 Bring up new RefBackend.
`tools/torchscript_e2e_test.sh` is all green.

This needs a few passes I put into torch-mlir/lib/RefBackend (not to be
confused with `npcomp/lib/RefBackend`, which will soon be deleted).

For the sake of review, since this brings together a lot of things, I
split this into its own commit. I temporarily commented out some "list"
stuff that we are going to remove as part of the torch-mlir refocus.
2021-09-22 14:20:22 -07:00
Sean Silva b6be96d722 [torch-mlir earthmoving (2/N)] Python code movement.
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.

As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.

torch-mlir has two top-level python packages (built into the
`python_packages` directory):

- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
  depend on PyTorch). This also involves building the aggregate CAPI for
  `torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
  PyTorch (or C++ code that transitively does).

Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):

- `npcomp_torch`: Contains the e2e test framework and testing configs
  that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
  IREE that `npcomp_torch` uses, along with its own
  `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
  python bindings. (all other functionality has been stripped out)

After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).

Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)

- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
  TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
  `frontends/pytorch` -- mainly things related to the e2e framework
  itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.

There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.

The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.

The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.

This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).

This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
2021-09-15 13:40:30 -07:00
Sean Silva 28a7738189 [torch-mlir earthmoving (1/N)] C/C++ code movement.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.

I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`

The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.

Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.

Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
  out, which should be resolved in a subsequent change.
2021-09-10 21:44:37 -07:00
Sean Silva a7252f9a06 Add basic support for lists.
This plumbs through a vertical slice of support for lists.

The main chunk of new code here is AnnotateABIPass which captures the
program signature at the Torch backend contract layer, right before we
start `TorchConversion`. The `TorchConversion` lowering process is lossy
w.r.t. types, so it's necessary to do this for all targets in general.
Like using `!iree.list` directly, we use IREE's ABI annotation
representation for this, although there is nothing very IREE-specific
about it (see
https://github.com/google/iree/blob/main/docs/developers/design_docs/function_abi.md)

We change `ListLiteralModule_basic` to use `!torch.int` because IREE
doesn't support f64 yet (and we don't yet have a way for users to say
that they want `!torch.float` to lower as f32).

Recommended review order:
- AnnotateABIPass and tests
- Arg marshaling in npcomp_backend.py and `iree.py`
- Updates to `list_programs.py` / `xfail_sets.py`
- Moving DeleteDeadIREEListsPass to Backend/Common, so that backends
  that don't support lists can use it. RefBackend uses that pass, for
  example.
2021-09-09 20:48:55 -07:00
Yi Zhang 73d553e168 MT model compilation minor changes
This contains the following changes:
 - Fix optional knowledge propagation. The initial knowledge should
 always be NotNone for the operations we implemented.
 - Add Folder for `prim.dtype`
2021-09-09 19:02:48 -04:00
Ramiro Leal-Cavazos 6724de7692 Added sum lowering
Added lowering to torch.sum into linalg
2021-09-03 17:37:06 -07:00
Sean Silva 1dec561cfd Update llvm-project to 830c0b9023cd0cf91955900e0d96283e7a8c3711
- builder.getSymbolRefAttr is gone.
- OpAsmOpInterface's getAsmResultNames method needs explicit override
- a bunch of churn for builtin.func needing to be made explicit (and
  sometimes implicit?)
- operation printers no longer need to print the operation name
  themselves.
- snuck in beneficial trivial addition to TmpDeleteDeadIREEListsPass to
  test a particular upstream change e2e with my local patchset.
2021-09-03 14:16:38 -07:00
Yi Zhang 3b0e5910a8 Refine types continue.
This should cover all the ops that are left in MT.
2021-09-02 14:39:28 -04:00
dan d9df4bfc95 Add sigmoid lowering
Follows existing conventions for activation functions
2021-08-30 17:32:23 -04:00
Yi Zhang d6b9709fa5 Changes to refine types
- Add `!torch.optional` knowledge tracking
- Changes to improve type propagation for branches and terminators. See
examples in `refine-types-branch.mlir`
- Refator to separate handling of different ops from `visitOperation`
- Add refine types for a few new ops
2021-08-27 11:42:00 -04:00
Yi Zhang bc5eae41ca Add more folders to fold away branches
Added folders to a few binary computing ops, `TupleUnpack`,
`__contains__.str` and `__getitem__.Dict_str`.
2021-08-26 17:37:49 -04:00
Stella Laurenzo 80ff744c56 Add a few missing deps exposed by stricter linking with BFD. 2021-08-22 11:56:48 -07:00
Sean Silva cab8d922ec Add TorchToIREE and factor out TorchConversion dialect.
This converts a basic list op (torch.prim.ListConstruct) to the IREE
dialect.

```
    def forward(self, x: float):
            return [x, x]
```

turns into:

```
builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> {
  %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float>
  return %0 : !torch.list<!torch.float>
}
```

which turns into:

```
builtin.func @forward(%arg0: f64) -> !iree.list<f64> {
  %c1 = constant 1 : index
  %c0 = constant 0 : index
  %c2 = constant 2 : index
  %0 = iree.list.create %c2 : !iree.list<f64>
  iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64
  iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64
  return %0 : !iree.list<f64>
}
```

As part of doing this, I realized that it was time to formalize the IR
form that we reach right before running TorchTo{Linalg,Std,...}. We now
call it the "Torch backend contract". We then lower the "Torch backend
contract" to the "npcomp backend contract", which involves the new
TorchConversion (`torch_c`) dialect, which holds ops that need to
operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE
list, etc.) and the `!torch` types.

This made more sense, as I realized that if I didn't factor out
`torch_c` then the Torch dialect would have a dependency on IREE
dialect (we previously didn't notice this was an issue because we only
depended on `builtin` types), which seemed wrong to me.

Recommended review order:
- TorchToIREE.cpp / `TorchToIREE/basic.mlir`
- Look at the new structure of createTorchScriptToNpcompBackendPipeline.
  It now lives in TorchConversion/Transforms/Passes.cpp and cleanly
  calls into `Torch::createTorchScriptToTorchBackendPipeline` for the
  frontend lowering to the Torch backend contract.
- Mechanical change extracting
  `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new
  TorchConversion dialect, and a few passes specific to the lowering
  from the Torch backend contract to the npcomp backend contract.
- Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that
  we convert lists as part of operand materialization, we need to use
  the original operands). Also added test for AtenMaxPool2dOp and fixed
  m_TorchConstantIntList.
- TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that
  are created as part of operand materialization for conv/max pool/avg pool ops
  in TorchToLinalg.
2021-08-16 15:01:58 -07:00
Yi Zhang 85ff8b692b Fix compilation errors from MT model
With the following changes the compilation can continue until
RefineTypes pass:

- Add operators without ODS into `torch_ods_gen.py`
- Add some new optional and list types in `TorchTypes.td`
- Add some folders for aten int type comparator ops
- Modify GlobalizeObjectGraph.cpp. For global slots that's not used,
dont check if an aliased value is stored in more than one of global
slots. This can work around a failure where the same tensor is stored
in multiple "version" slots which are not used.
2021-08-16 16:37:23 -04:00
Yi Zhang bfc3ee35c6 Import Machine Translation model to MLIR.
This includes the following changes to import MT model into MLIR. There
are still a lot of work to for actual compilation.
- Add `torch.dict<>`, `torch.any`, `torch.number` types
- Add `torch.prim.DictConstruct` op
- Fix `torch.prim.TupleConstruct` op assembly format to include resulting types
2021-08-10 15:22:06 -04:00
Yi Zhang 0342b73bf1 Add torch.aten.flatten.using_ints and aten.MaxPool2d linalg lowering
- torch.aten.flatten.using_ints to linalg lowering
- torch.aten.max_pool2d to linalg lowering
- Support torch.aten.conv2d for more flexible dilation and strides values
2021-08-04 12:00:43 -04:00
Sean Silva f168cacd6d Remove TCF and TCP.
These were legacy concepts that are now superceded by direct Torch to
linalg-on-tensors lowering. These were based on some very early thinking
related to the layering of frontends vs codegen, which is now obsolete
because:
- We expected a lot more centralization at the frontend (TCF) level. It
  turns out that frontend needs really vary a lot, and there is no grand
  unifying TCF dialect plausible. The additional layer isn't worth it.
- Linalg-on-tensors obsoletes the primary need for TCP. There are still
  a few things not representable with linalg-on-tensors, but the support
  is growing and the whole "not included in linalg-on-tensors" direction
  needs to be rethought. Our TCP dialect didn't cover any of the
  actually important things in this space (such as sort, FFT, top-k,
  etc.).

See historical [slides](https://drive.google.com/file/d/1iljcpTQ5NPaMfGpoPDFml1XkYxjK_6A4/view) / [recording](https://drive.google.com/file/d/1jSPa8TwPKUt0WuLquGc8OgSUVYJHMvWZ/view)
for more details on the origin story here.

Their presence was confusing users too
[bug](https://github.com/llvm/mlir-npcomp/issues/248).

Also,
- Trim down npcomp-run-mlir testing. It was testing TCF to TCP
  lowering for the most part. The essential stuff is retained and
  rephrased with linalg-on-tensors. (we should probably rename it
  "refback-run" or something, as it is just a way to invoke RefBackend)
- test/Python/Backend/RefJIT/simple_invoke_numpy.py is XFAIL'ed. Our
  "anti-framework" direction seems to be the likely future path.
2021-08-02 12:08:39 -07:00
Yi Zhang 89d4931324 Linalg lowering for aten.conv2d and aten.AdaptiveAvgPool2d
1. Add m_TorchConstantIntList
2. Lowering for aten.conv2d
3. Lowering aten.AdaptiveAvgPool2d
2021-07-09 15:04:29 -07:00
Sean Silva 83b5b5456d Bump llvm-project to da289a174fc6617c7be37be2947480510fd4f02a
- Build adjustments for `.cpp.inc` dialect files.
- Renaming of `memref.dim` to `tensor.dim` for tensor case.

Minor changes:
- Renaming of `mlir::linalg::ReassociationIndices` to
  `mlir::ReassociationIndices`.
- Adjust command line option parsing in npcomp-run-mlir.
2021-07-07 13:57:29 -07:00
Sean Silva 79928cd2dd Generalize support for elementwise ops.
We plumb through e2e a fair number of interesting cases:
- unary, binary, ternary elementwise ops
- ops like `torch.aten.add.Tensor` that also take a scalar parameter
- static size-1 broadcasting

We allow the static size-1 broadcasting case, but emit a runtime error
in the case of dynamic size-1 broadcasting. This seems like a sweet spot
subset of things that can be lowered directly to linalg, while not being
overly constraining to users. This is consistent with what IREE is doing
for CHLO->Linalg lowering as well
([code](50bf7a87e4/iree/compiler/InputConversion/MHLO/BroadcastingToLinalgPatterns.cpp (L1))).

To test the static size-1 case, we added support for the
`torch.aten.unsqueeze` op and lowering for it through
`linalg.tensor_expand_shape`. This involved a generalization of
`MaximizeValueSemantics` able to handle it (the solution there also
works for `torch.aten.flatten.using_ints` which we need for ResNet
anyway)

Also, a few minor additional changes:
- Add `VerifyInvariantsBeforeBackendLowering` pass, which catches a
  large class of errors before we get to backend lowering (now that we
  are doing dialect conversion, the errors are way nicer if we just emit
  them up front rather than in the guts of a random pattern).
- Minor change to RefBackend to allow `linalg.tensor_expand_shape`.

Recommended review order:
- e2e tests in elementwise.py
- `ConvertElementwiseOp` in TorchToLinalg.cpp + elementwise.mlir test
- `ConvertAtenUnsqueezeOp` in TorchToLinalg.cpp + unsqueeze.mlir test
- RefineTypes.cpp + tests
- MaximizeValueSemantics changes + test
- VerifyInvariantsBeforeBackendLowering pass + test
2021-06-28 13:28:38 -07:00
Sean Silva 145d4ae23c Bump llvm-project to a37cf17834d39411ed1d669098b428f8374c5b45
Changes:
- Change to operand ordering of `linalg.fill`.
2021-06-23 10:03:29 -07:00
Sean Silva 90c6c64fd6 Make torch.constant.float print a little nicer.
This printing is chosen to be similar to how MLIR prints the values by
default.
2021-06-23 08:07:45 -07:00
Sean Silva 60a947b4a7 Add CastOpInterface to torch.prim.unchecked_cast.
This allows it to fold away in trivial cases.
2021-06-23 08:07:45 -07:00
Yi Zhang 45f2edfc7a Add TorchToSCF pass.
1. Add TorchToSCF pass.
2. Convert prim.If and prim.If.yield.
2021-06-23 08:06:43 -07:00
Yi Zhang 5ad144c4fe More folding for aten.gt.int, aten.ne.int and Aten__Getitem__TOp.
- Fold more for aten.gt.int, aten.ne.int and Aten__Getitem__TOp
- Some format cleaning up
2021-06-23 08:06:37 -07:00
Sean Silva 79aade33da Make MaximizeValueSemantics a bit smarter.
This adds a pattern to MaximizeValueSemantics which does a simple
abstract interpretation within a block, which handles simple cases of
`torch.overwrite_tensor`, enough to remove all the unnecessary uses of
non-value tensors in ResNet right now.

Before/after IR:
[gist](https://gist.github.com/silvasean/a3e1ef625b19dfc63579f73cd3b543b6)

Also,
- Split `torch.copy.tensor` into `torch.copy.to_tensor` and
  `torch.copy.to_vtensor` which convert between value and non-value
  semantic tensors. This is a much cleaner factorization as they have
  very separate use cases and properties (e.g. different side effects)
- Remove the various canonicalization patterns they had, which were
  confusing because they resulted in limited forms of maximizing value
  semantics throughout the pipeline. We should structure our compilation
  pipeline such that only MaximizeValueSemantics should be maximizing
  value semantics.
- Adjust pass pipeline to only run MaximizeValueSemantics once.
- Make OverwriteTensorOp `$value` always be a value tensor and
  `$overwritten` be a non-value tensor.
2021-06-22 16:48:57 -07:00
Sean Silva 78d2cc0818 Make `torch.copy.tensor` canonicalization a bit smarter.
This removes most of the trivial cases that MaximizeValueSemantics needs
to handle, making it easier to see the nontrivial cases.
2021-06-17 18:11:58 -07:00
Sean Silva 40369c54dc Adjust pass pipeline for changes to `dim` canonicalization.
This results in cleaner IR. In particular, Mlp2LayerModule e2e test has
a dim op that is eliminated by this change:
https://gist.github.com/silvasean/734f11a291ae6236c955f65cffae285f
2021-06-17 16:59:55 -07:00
Sean Silva 333e07a74e Add `torch.vtensor.literal` op.
This op is much better behaved than the `torch.tensor.literal` op
(which is the new name of the `torch.tensor` op). In particular
`torch.tensor.literal`:
- always has a maximally refined type.
- always has value semantics.
- can be constant folded / CSE'd.

ReduceOpVariants is changed to perform the transformation from
`torch.tensor.literal` to `torch.vtensor.literal` (which in general
involves static information casts and copies.

This new op also allowed tightening up `torch.tensor.literal` to only
accept NonValueTensorType (instead of any tensor type).

This new ".literal" name is more descriptive. It was getting too
confusing seeing an op called just `torch.tensor` (we originally called
it that because that's the name of the similar function in the Torch
Python API, but it just doesn't fit here).
2021-06-17 14:37:04 -07:00
Sean Silva 4a0eb44d17 Add a !torch.float type.
This removes the dependence of the `torch` dialect on the low-level
builtin types.
Now the `torch` dialect is a standalone layer, suitable for targeting
from higher-level Python abstractions without any premature lowering to
primitive types.
2021-06-17 09:24:18 -07:00