Commit Graph

2 Commits (6b293b695d11415053cc8a0869208d9f2fa80521)

Author SHA1 Message Date
Sean Silva 370e3270ab Introduce `!torch.tensor` / `!torch.vtensor` types.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes.  The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:

```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```

This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".

At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.

Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
  creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
  touch -- we need to sort out the situation with !basicpy.BoolType
  there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
  semantics. We currently require this, as our backend contract does not
  currently allow us to even model the non-value-semantic case. Before,
  the value-semantic assumption was randomly injected in the middle of
  the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
  RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
  `!torch.vtensor` to `tensor` and use the dialect conversion infra.
  The overall conversion pipeline is set up following the best practices
  of the "Type Conversions the Not-So-Hard Way" talk. This required
  introducing `torch-func-builtin-tensorize` and
  `torch-finalizing-builtin-tensorize` passes analogous to the upstream
  bufferization passes with the corresponding names (mostly just
  copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
  lowering to std later in the pipeline, so we are gradually lessening
  our reliance on random std constant folding before we get to that
  point.

Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
  - Frontend changes.
  - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-06-10 10:56:48 -07:00
Sean Silva d66e8fe1f8 Get simple quantized model importing.
This is enough to import the program and get it through the compilation
pipeline. It of course fails at the VerifyBackendContract pass since
there is a lot missing, but the final IR for a simple quantized MLP is
looking pretty decent already:
[IR](https://gist.github.com/silvasean/f76bccd76e9b193d396cfb2f9a11f54d)

Main changes:
- Add support for importing torch quantized tensors, including
  `torch.per_tensor_affine.create` op and `!torch.qint8` element type.
- Add support for importing `LinearPackedParamsBase` (basically a weight
  + optional bias, but requires `torch.linear_params.create` op +
  `!torch.LinearParams` type to model it). This was less painful than I
  expected, as it has the necessary methods to opaquely unpack itself. I
  factored things so it should be easy to extend to other custom classes
  like `ConvPackedParamsBase`.
- Add minimal boilerplate for importing `quantized::*` ops, with
  `quantized::linear` being a motivating example.
- Add e2e test with simple quantized MLP (courtesy of @phoenix-meadowlark).

This is somewhat of an abuse of `!numpy.ndarray` / `tensor`, as
really the proper semantics of `!torch.qint8` dtype on a Torch tensor is
"check the quantizer object of the tensor for side data (scale/offset,
possibly per-channel) that defines the full semantics of the tensor". We
don't have any such notion of "side data" for `!numpy.ndarray` /
`tensor`, let alone anything that would have the associated behavior of
keying off the dtype to determine if the side data is present.
This will be fixed by a proper `!torch.tensor` type.
2021-05-20 11:28:20 -07:00