Commit Graph

36 Commits (7247c6a3a76482f6c9c4589c8c4f42872e7a1e1a)

Author SHA1 Message Date
Sean Silva 85858d2743 Bump LLVM to 889c6f3996769a991a24da957f597e7500d158e7
The biggest change here is to upgrade RefineTypes to the new sparse
dataflow framework.

Smaller changes:
- minor changes to type parsing
- suppress warnings in e2e tests
2022-07-15 13:36:04 -07:00
Yi Zhang ec0e9e0bc7 Add -s flag to run e2e tests sequentially
A user might want to avoid the extra layer of multiprocessing libary for
debugging purpose. In such cases, the -s flag can be used to force
sequential execution.
2022-05-11 21:16:41 -04:00
Sean Silva 3b5310d6d2 Move COMMON_TORCH_MLIR_LOWERING_XFAILS into test_suite
That way, downstreams don't have to duplicate this list.

Also, remove "external config" feature, since it is subsumed by just
importing the test suite.
2022-04-19 14:32:58 -07:00
Sean Silva 0378c75b35 Centralize all test serialization logic. 2022-03-28 10:17:13 -07:00
Sean Silva 6b637a9fd9 Move e2e test definitions into the `torch_mlir_e2e_test` package
This is the first step to making the e2e framework convenient to use
by downstream backends.
2022-03-25 13:56:41 -07:00
max fe8ac57e6d This PR implements an eager mode backend for PyTorch through the torch-mlir framework. This is accomplished by overriding the `__torch_dispatch__` class method on wrapper subclass `TorchMLIRTensor(torch.Tensor)`.
Effectively, this mode works by compiling op by op as the NN is eagerly executed by PyTorch. Entailed in that compilation is building a representation of the op that can be `torch.jit.script`ed, importing using `ModuleBuilder`, and then executing (e.g., with `RefBackendLinalgOnTensorsBackend`). This mode includes a fallback to conventional PyTorch if anything in the torch-mlir compilation process fails (e.g., unsupported op).

Currently, all e2e tests pass execpt for two that involve an upstream PyTorch bug (https://github.com/pytorch/pytorch/issues/74400).

High priority next steps:

1. A compile cache in order to speed up reruns of the same NN.
2. Integration with IREE (though not in this repo).
3. Integration with `torch.distributed`.
2022-03-22 14:42:57 -07:00
Vivek Khandelwal 3d95c3d6c9 [MLIR][TORCH] Add value tensor variant to aten::_index_put_impl_
This commit adds the op `ValsemVariantAtenIndexPutImplOp` that represents
`Aten_IndexPutImpl_Op` without the underscore. This is needed to
make sure that the `ReduceOpVariants` pass turns the in-place op
into an op that takes value tensors as inputs, otherwise the
`MaximizeValueSemantics` pass will not be able to add value
semantics correctly.

This commit also adds the lowering of `ValsemVariantAtenIndexPutImplOp` op.

This commit also updates the `torch.bincount` op test cases.
2022-03-16 22:02:02 +05:30
Gaurav Shukla 41acde599b [LINALG] Add E2E support for `aten.[le|ge].Scalar` ops
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
  as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
  element-wise comparison ops.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-15 12:21:09 +05:30
Gaurav Shukla 78c7844c6c [LINALG] Add E2E support for `aten.eq.int` op
- This commit adds lowering of `aten.eq.int` op as a part of
  `convert-torch-to-std` pass.
- It also refactors the code for binary comparison ops lowering.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-15 01:37:35 +05:30
Gaurav Shukla f00d1686c8 [LINALG] Add E2E support for `aten.[Bool.Tensor|Float.Tensor]` op
- This commit adds lowering of `aten.Bool.Tensor` and
  `aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
  input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
  `aten.Float.Tensor` op, it folds to the scalar number.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-14 23:09:20 +05:30
Gaurav Shukla 2fefe68ffd [TORCH][MLIR] Add E2E support for `aten.native_batch_norm` op
- This commit adds support for `aten.native_batch_norm` operation.
- The current implementation only supports inference mode of
  `aten.native_batch_norm` op.

Signed-Off-By: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-08 02:54:03 +05:30
Gaurav Shukla 0079901039 [TORCH][MLIR] Add E2E support for `aten.reshape` op
This commit decomposes `aten.reshape` into `aten.view` op in the case of
value tensor type operand.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-02-02 20:41:47 +05:30
Yi Zhang 0cb216a1ad [Torch][Linalg] Add basic support for RNG
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
2022-01-31 18:56:42 -05:00
Gaurav Shukla 13b9fd62c6 [TBE] Add a test module for table batch embedding
This commit adds a test module specifically for table batch embedding
algorithm. This test case is in reference to the FBGEMM table batch
embedding:
https://github.com/pytorch/FBGEMM/blob/main/fbgemm_gpu/bench/split_table_batched_embeddings_benchmark.py#L270

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-01-28 02:24:28 +05:30
Nirvedh 17a4843cf7 Adding an e2e test for histogram binning calibration 2022-01-25 18:27:20 -05:00
Vivek Khandelwal ca662dc9cc [MLIR][TORCH] Add E2E support for aten.threshold, aten.threshold_backward op
This commit adds lowering of `aten.threshold` op
This commit adds lowering of `aten.threshold_backward` op

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-01-10 11:56:56 +05:30
Gaurav Shukla 3c40539b34 [TORCH][MLIR] Add E2E support for `aten.[ones_like|zeros_like]`
- This commit adds E2E support for `aten.ones_like` and
  `aten.zeros_like` ops.
- Adds support for non-None `dtype` argument of `aten.empty_like` op.
- All the unit test cases related to constant tensor allocation like ops
  are moved to a different file named `constant_alloc.py`.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-01-06 20:24:40 +05:30
Vivek Khandelwal 4486de5ef3 [MLIR][TORCH] Add E2E support for torch.arange op
This commit adds lowering of `aten.arange.start_step` op.
This commit decomposes `aten.arange` and `aten.arange.start` into
`aten.arange.start_step` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2021-12-27 22:45:48 +05:30
Vivek Khandelwal 8130354c09 [MLIR][TORCH] Add E2E support for aten.index_select op
This commit adds lowering of `aten.index_select` op.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2021-12-09 23:13:36 +05:30
Prashant Kumar 977b1b03ea Add aten::nll_loss_forward op lowering.
The op lowering has been added as a part of `torch-lower-to-linalg`
pass. This takes care of ignore_index but the weight and reduction
operand is still to be accounted for.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-12-07 17:11:08 +05:30
Daniel Garvey a52aded0b9
Add lowering for slice and selectInt (#398) 2021-12-02 22:09:21 -06:00
Gaurav Shukla 73b27b32dc [MLIR][TORCH] Add E2E support for `aten.squeeze` op
This commit adds lowering of `aten.Squeeze` op into
`linalg.TensorCollapseShape` op. The size 1 dynamic dimensions are not
handled as a part of this commit.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-11-30 23:00:28 +05:30
dan 03fdf56f21 add aten.add.int lowering in TorchToStd 2021-11-29 13:22:50 -05:00
Yi Zhang 3bd9d2a4c7 Add e2e support for aten._softmax_backward_data.
Decompose aten._softmax_backward_data into aten math ops. Also decompose
`aten.size` to facilitate decomposing _softmax_backward_data.
2021-11-09 13:09:30 +05:30
Yi Zhang 05c4dd8e39 Add convertScalarToDtype helper.
This is to facilitate scalar type conversion in the TorchToLinalg. As
part of adding the helper, this PR also:
- Updated `AtenAddTensorOp`, `AtenSubTensorOp` to use the helpers to
support more type variants.
- Added e2e type promotion testing.
- Added i32 memref return/arg type to support e2e testing.
2021-11-08 17:50:52 -05:00
Gaurav Shukla 69eaf9a154 [MLIR][TORCH] Add E2E support for `torch.aten.view`
- This commit adds lowering of `aten.View` to `linalg.TensorExpandShape`.
- This lowering will be successful only when one or more static
  dimensions are expanded.
- It also fixes a typo in `ConvertAtenFlattenUsingIntsOp` conversion
  pattern.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2021-10-29 22:33:10 +05:30
Prashant Kumar 5009cbf55c Add lowering of aten.matmul op.
Lowering of `aten.matmul` op is added from torch to linalg dialect.
The different cases correspond to
https://pytorch.org/docs/stable/generated/torch.matmul.html.
TODO: Broadcasting in case of batch-matmul is yet to be taken care of.

Signed-off-by: Prashant Kumar <prashant@nod-labs.com>
2021-10-26 12:45:09 -04:00
dan 7750d2173a add argmax lowering
Add argmax lowering from torch to linalg
2021-10-13 14:31:16 -04:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
Sean Silva f69630255a Add --external-config option to tools/torchscript_e2e_test.sh
This is a simple way for externals to plug their backends into the test
suite. They just implement the `TestConfig` class for their backend and
write a small script that exposes it.

I have a pending PR for iree-samples that successfully integrates this.
2021-10-04 11:48:16 -07:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva 404bd74ddf Port the bulk of the remaining code to torch-mlir
This leaves no real code outside torch-mlir.

This also renames the "npcomp backend contract" to "linalg on tensors
backend contract" as the name of the abstraction layer that RefBackend
(IREE too) accepts.
2021-09-27 12:48:33 -07:00
Sean Silva 1a0b953ea7 Eliminate almost all mentions of IREE.
A few remain in examples/docs that will be naturally be updated in due
time.

This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
2021-09-22 16:06:38 -07:00
Sean Silva 8779d920b2 Remove "refjit" terminology.
We now use RefBackend/refbackend consistently.
2021-09-22 15:41:23 -07:00
Sean Silva 0eb767ea45 Remove frontends/pytorch directory.
It just contained the e2e testing framework. We now fold it into the
main project to reduce complexity.

- `frontends/pytorch/python/` -> `python/torch_support`
- `frontends/pytorch/e2e_testing -> e2e_testing`
- `frontends/pytorch/examples -> examples`
- `frontends/pytorch/test` -> `python/test`
- `torch_mlir_torchscript` python module -> `npcomp_torchscript`
- `torch_mlir_torchscript_e2e_test_configs` python module ->
  `npcomp_torchscript_e2e_test_configs`

This also changes the license of a handful of files from the
"pytorch-style" license to the regular LLVM/npcomp license. The only
people who committed to those files were myself and Yi.
2021-09-17 09:27:49 -07:00