Commit Graph

484 Commits (7bd173a1c46046be99e8bd042fd18513f0215d8c)

Author SHA1 Message Date
Ramiro Leal-Cavazos f07f7d20f9
Clean up shape functions that use `sum_mean_dim` (#1217)
I recently fixed the handling of the `dim` argument in
`sum_mean_dim` (59fccab857). Therefore,
the checks that the `dim` input is `None` or `[]` are no longer needed.
2022-08-18 08:23:43 -07:00
Quinn Dawkins 85f383ce0b
Bump the shape lib to match the upstream functions currently in PyTorch (#1236)
Bumps the shape library:
 - Updates the function signature for aten.arange.start_step
 - upstream_shape_functions.mean_dim -> upstream_shape_functions.sum_mean_dim
2022-08-17 00:11:04 -04:00
nithinsubbiah fde390c766 Re-enable custom op support 2022-08-16 22:49:08 +05:30
Jae Hoon (Antonio) Kim 0af55781ae
Propagate device data names (#1157)
* Propagate device data names

* Address PR comment

* Add example usage

* Add test for device data names

* Make TorchMlirComputation fields protected

* Add lazy backend device data name unit tests

* Disable lazy backend tests if LTC is disabled

* Add comments
2022-08-16 09:30:22 -04:00
武家伟 3b3cb99ef8
Generalize canonicalization pattern for more aten.sub/div/mul/add op (#1209)
Generalize canonicalization pattern for more sub/div/mul/add op, but for AtenDivTensorModeOp in 'trunc' rounding mode, we try to fold it.
2022-08-16 13:24:08 +08:00
Sambhav Jain 41aa562fb4
s/external/externals/g (#1222)
Fix remaining instances of `external/llvm-project`.
2022-08-13 07:13:56 -07:00
Prashant Kumar b1a506624c Add decomposition of `aten.masked.tensor` op.
`aten.masked.tensor` op has been decomposed to `aten.masked.scalar` op.
2022-08-11 07:48:04 +05:30
Vidush Singhal dd2da5a038
E2E support for AtenRemainderScalarOp (#1200) 2022-08-10 20:02:06 -04:00
gpetters94 79b9cf9468
Add lowering for aten.to.device (#1107) 2022-08-10 19:24:02 -04:00
powderluv 2342456356
mac m1 cross compile (#1204)
* mac m1 cross compile

Add support for M1 cross compile

* Remove redundant ExecutionEngine

It is registered as part of RegisterEverything

* nuke non-universal zstd

disable LTC
2022-08-10 08:48:39 -07:00
powderluv e55fc4deb5
Revert "E2E support for AtenRemainderScalarOp (#1119)" (#1190)
This reverts commit 34e207eeb5.
2022-08-08 22:59:57 -07:00
Henry Tu 3e97a33c80
Revert "Reenable LTC in out-of-tree build (#1177)" (#1183)
This reverts commit f85ae9c685.
2022-08-08 18:58:35 -07:00
Vidush Singhal 34e207eeb5
E2E support for AtenRemainderScalarOp (#1119)
* E2E support for AtenRemainderScalarOp
2022-08-08 20:02:52 -04:00
Vidush Singhal b70548edff
Add decomposition and E2E support for Aten_EmbeddingBag (#1137)
* Add decomposition and E2E support for Aten_EmbeddingBag
2022-08-08 18:56:49 -04:00
Henry Tu f85ae9c685
Reenable LTC in out-of-tree build (#1177) 2022-08-08 17:35:22 -04:00
Tanyo Kwok 290d7755fb
importer: add initial support for loading Float16 tensors (#1169)
follow up #761:

    This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
    method to enable the creation of tensors whose base type is Float16.
    This patch also adds a test to validate the IR generation, and it
    updates the test for importing tensors of various types.
2022-08-08 12:37:31 +08:00
Sean Silva 5618890ca0 development.md: Avoid name collisions with PYTORCH_ variables 2022-08-05 19:41:08 -07:00
Henry Tu e322f6a878
Update LTC CMake hack documentation (#1155)
* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update buildAndTest.yml

* Update setup.py

* Address review comments
2022-08-05 14:12:20 -04:00
Sean Silva 8ce5d3f12c E2E framework: Report tensor dtype in summary
This helps to triage issues related to backends that don't support all
dtypes.
2022-08-05 10:05:18 -07:00
Vivek Khandelwal c129a6de93 [MLIR][TORCH] Add support for dim=None to Aten[Var|Std]DimOp
PyTorch recently added support for `dim=None` in the `torch.var`
(5ca9b2b6fa)
and `torch.std`op (eb0e30e0bc).
This commit adds the corresponding support in torch-mlir.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-08-05 20:28:56 +05:30
Sean Silva 31727f81d8 torch_mlir.compile: Allow ignoring traced shapes
In some cases, users know that a traced graph is valid for a wider set
of shapes than they originally traced it with. Provide an option for
users to ignore the shapes in the traced graph when they know it is
legal.

Fixes #997
2022-08-04 10:18:34 -07:00
Sean Silva 6484776a25 Make numerical stability test more perverse
To test the summation stability of `torch.aten.var`, add a large
constant to it, which increases the effective precision requirements.
2022-08-04 10:04:38 -07:00
gpetters94 08fc2d89bb
Add non-unit groups support to aten.convolution (#858) 2022-08-04 02:18:38 -04:00
Ramiro Leal-Cavazos a7af1fd873
Add support for `dim=None` to `AtenMeanDimOp` (#1129)
PyTorch recently added support for `dim=None` in the `torch.mean`
op (2bfae07a79). This
commit adds the corresponding support in torch-mlir.
2022-08-02 16:08:06 +00:00
Quinn Dawkins 38d8498b21
add e2e support for aten.atan2 (#1117)
- Includes math-to-libm pass in refbackend for math::atan2 support
2022-08-02 11:39:41 -04:00
Vidush Singhal ed13ebfd8d
E2E support for AtenEmbeddingBagPaddingIdxOp SUM Mode (#1066) 2022-08-01 16:44:11 -04:00
Alec 554570f3ab Implemented a decomposition of aten::narrow 2022-08-01 18:32:14 +05:30
Henry Tu 2c3b3606d0 Resolve remaining LTC CI failures (#1110)
* Replace CHECK_EQ with TORCH_CHECK_EQ

* Check value of TORCH_MLIR_USE_INSTALLED_PYTORCH during LTC build

* Update LTC XFAIL with NewZerosModule ops

* Explicitly blacklist _like ops

* Automatically blacklist new_/_like ops

* Prune away unused Python dependencies from LTC

* Add flag to disable LTC

* Autogen dummy _REFERENCE_LAZY_BACKEND library when LTC is disabled

* Implement compute_shape_var

* Removed Var tests from XFAIL Set

* XFAIL tests using _local_scalar_dense or index.Tensor

* Add StdDim tests to XFAIL set

* Autogen aten::cat
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 425362263b Clean up Autogen (#1112)
* Remove unnecessary sed in autogen

* Remove .pyc files frrom VCS
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 368963243e Export LTC Headers (#1108) 2022-07-30 09:40:02 -04:00
Henry Tu 70395de197 Resolve CI testing failure for Lazy Tensor Core (#1088)
* Xfail unsupported ops

* Register FuncDialect

* Include dynamic_ir in build

* Code reformat

* Enable LTC tests for macOS and Source Build
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 0d16a91656 Add support for lift_fresh op (#1101) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim e37891b997 Default Device Ordinal API (#1079)
* Add default device ordinal API

* Fix reference backend
2022-07-30 09:40:02 -04:00
Antonio Kim de6c135dc3 Fix LTC autogen for CI with nightly PyTorch
- Update llvm-project pin to match main
2022-07-30 09:40:02 -04:00
Henry Tu cec74b8d37 Blacklist _convolution op (#1048)
* Blacklist _convolution op in LTC

* Removed duplicate Torch_AtenSelectScatterOp instance from autogen .td

* Removed duplicate Torch_AtenSliceScatterOp instance from autogen .td
2022-07-30 09:40:02 -04:00
Henry Tu 47bb38d180 Reference Lazy Backend (#1045)
* Changed Example MLIR backend to Reference MLIR backend

* Moved reference_ltc_backend into csrc

* Merged sys_utils.h

* Renamed reference_ltc_backend to reference_lazy_backend

* Addressed review comments

* Update docs with new library name

* Removed _REFERENCE_LAZY_BACKEND from .gitignore

* Added reference_lazy_backend to the TorchMLIRPythonModules dependency list

Fixed typo in `ltc_examples.md`

Missed instance where `ltc_backend` was used instead of `lazy_backend`.
2022-07-30 09:40:02 -04:00
Henry Tu f5acad8512 Prune xfail e2e LTC tests & fix bugs from functionalization pass (#1044)
- Pruned number of xfailed e2e LTC tests from 305 to 134
  - Reviewed every failure to ensure the error genuinely warrants an xfail
- Fixed bug where non-tensor outputs of LTC computation had `.to('cpu')` called, which caused a failure and inflated the xfail count
- Fixed bug with `HBC_basic` test where a constant tensor was created in its constructor without being declared as a buffer, which prevented the device from being updated when the parent `torch.nn.Module` got moved to the `lazy` device
  - Note that this test is still xfail'd due to some unsupported ops. Left a comment about some potential issues that may arise if it gets reenabled in the future
- Updated autogen `GeneratedTorchOps.td` to reflect the latest set of supported ops
- Renamed `aten.zero.functionalization` to `aten.zero` to reflect upstream PyTorch changes
2022-07-30 09:40:02 -04:00
Henry Tu 9de06f3ebd Update Torch MLIR readme 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim fb21c9e6cb Integrate Functionalization Pass (#998)
* Fix autogen build dir issue

* Got functionalization pass to compile

* Add slice/diagonal backwards functionalization

* Fix codegen invocation in CMakeLists.txt

* Add functionalization view ops

* Fix logsumexp out functionalization

* Fix ComputationPtr

* Blacklist new_empty op

* Add op comparison

* Remove unnecessary ops

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu 1510eae75d Upstream native_batch_norm and native_batch_norm_backward shape inference functions (#978)
* Removed compute_shape_native_batch_norm

* Removed compute_shape_native_batch_norm_backward
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim a62d60829c Refactor autogen (#925) 2022-07-30 09:40:02 -04:00
Henry Tu dfcc26556a Added e2e LTC tests (#916)
* Added e2e LTC Torch MLIR tests

* Fix seed for reproducability

* Check if computation is None before getting debug string

* Updated unit tests, and added numeric tests

* Print name of the model layer that fails numeric validation

* Run LTC e2e test with CI/CD

* Set seed in main function, instead of beginning of execution

* Add comment to specify number of digits of precision

* Fixed typo

* Remove tests for LTC example models

* Added LTC option to torchscript e2e

* Implement compile and run for LTC e2e test

* xfail all tests that use ops that aren't currently supported
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 8312fa535b Refactor Node Lowering (#914) 2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim d9aee0d7a7 E2E HuggingFace Bert using LTC Backend (#912)
* Update native function definitions

* Add ops to support bert lowering

- Add empty_strided and as_strided

- Restore zeros_like to op blacklist (Without this, tensors will be unintentionally created with a CPU device rather than lazy)

- Check for composite implicit ops and add device data IR

- Also fix codegen for functionalization

* Add autogen to CMakeList

* Remove PyTorch submodule

* Reduced BERT model size

* Print Mark Step status in Torch MLIR LTC debug string

* Apply fixes to work with latest upstream/main

- Pass importOptions into getMlirTypeFromTorchType during NodeImporter::importNode

  Without this, the tensor type created may have a mismatched type as ImportOptions may cause vtensor to be used instead of tensor

* Update shape inference functions

- Fixed compute_shape_native_batch_norm when mean and var are uninitialized

  Previously, the number of shapes returned would be <3 if either mean or val was didn't exist. Instead, we now initialize them with a vector matching the number of channels.

- Implemented compute_shape_mul

- Fixed bug in reshape shape inference error message

* Get MLIR backend more consistent with TS backend

- Remove LazyNativeFunctions::_unsafe_view from autogen

- Blacklist ops to make JIT graph more like output of TS backend

- Print graph when SSA value has mismatch of types and results

- Remove normalize_index from LazyShapeInference

- Fix seeds for LTC example models

* Update and clean up shape inference functions

- Prune shape inference functions

- Add shape inference function for GenerateSlice

- Add shape inference function for GenerateCopy

Co-authored-by: Henry Tu <henry.tu@cerebras.net>
2022-07-30 09:40:02 -04:00
Henry Tu 0c35e607b3 Add static shape for scalar tensors (#833)
* Assume zero rank tensors are scalar

* Run RefineTypes pass on JIT Graph

* Rollback assumption that zero rank tensors are scalar

* Set numSizes to -1 for non-ranked tensors

* Rename RefineTypes to RefineTupleTypes
2022-07-30 09:40:02 -04:00
Henry Tu de5b380143 Bert example and relevant shape inference functions (#831) 2022-07-30 09:40:02 -04:00
Henry Tu 406d1e7538 Use JIT GraphExecutor for execution in example backend (#830)
* Update LazyShapeInference header

* Use JIT GraphExecutor for execution in example backend
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 1bde00c73d Fix LTC Decoupling (#815)
* Initial changes

* Fix up native functions

* Further fix decoupling

* Remove unnecessary ops

* Formatting and copyright banners:

* Add pytorch submodule
2022-07-30 09:40:02 -04:00
Henry Tu cca9fe126e Enable support for LTC Input/Output Mapping (#764)
* Save InputOutputAliases to TorchMlirComputation

* Implement GetResultShape for TorchMlirLoweringContext

* Use optional return type for GetResultShape

* Remove support for aten::detach

With this op enabled, tensors were being copied, which resulted in incorrect aliasing.

* Add newline before printing I/O alias mapping

* Changed printout to use "Input param" as label instead of "Input"

* Remote shape inference function for aten::detach

* Moved implementation of SetUpAlias to MlirLoweringContext

As part of this change, TorchMlirComputation has been moved to the end of mlir_lowering_context.h so that it can access some new structs in TorchMlirLoweringContext

* Use updated PyTorch API

* Remove GetResultShape

Complements this upstream PyTorch PR: pytorch/pytorch#75828

This PR adds support for mapping input and output tensors which alias each other. (e.g. maps input weight tensor in parameter to the same tensor in output after a training iteration)

MLIR: 
func @graph(%arg0: !torch.vtensor<[1,5],f32>, %arg1: !torch.vtensor<[1],si64>, ..., %arg6: !torch.vtensor<[10,5],f32>, %arg7: !torch.vtensor<[10],f32>, ...) {
  ...
  return %arg0, %arg1, %17, %23, ... : !torch.vtensor<[1,5],f32>, !torch.vtensor<[1],si64>, !torch.vtensor<[10,5],f32>, !torch.vtensor<[10],f32>, ...
}

Input/Output Alias Mapping: 
Output: 0 -> Input: 0
Output: 1 -> Input: 1
Output: 2 -> Input: 6
Output: 3 -> Input: 7
The aten::detach op has also been disabled in this PR to fix the issue of tensors not aliasing properly due to copying.
2022-07-30 09:40:02 -04:00
Antonio Kim 615ff1d31c Generate MLIR with shape information via LTC frontend (#742) 2022-07-30 09:40:02 -04:00