Commit Graph

16 Commits (7e7af670802d99cacdaf26e6e37249d544e4896e)

Author SHA1 Message Date
Vivek Khandelwal 2f231f394e
Bump Onnx Version to 1.16.1 (#3515)
This commit adds the support for new data types: uint4, and int4 and
uint8 tensor protos. Also, it moves some tests from failing to crashing.

Fixes https://github.com/llvm/torch-mlir/issues/3507

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-07-01 22:15:45 +05:30
Andrea 🦈 51902ec2dc
Create MLIR functions for ONNX operators that are functions (#3409)
Resolves #3384.

Many ONNX operators are defined by functions and therefore could be
expanded into simpler ONNX operations during importing, avoiding the
need for tools downstream to support these operators directly.

This commit adds this capability to onnx_importer.py. When importing a
node, the schema for the node's operator is retrieved. If the schema
provides a function for the operator, a specialized version for the
node's types and attributes will be created and imported as an MLIR
function with private visibility. An MLIR function call will then be
emitted, instead of a normal operator node. Caching is used to avoid
generating redundant functions within the same module.

In order to avoid a disruptive change to the importer output for a
large number of operators that already have TorchOnnxToTorch support,
an allowlist strategy is used by default. With this commit, only one
operator is allowlisted for expansion, MeanVarianceNormalization.
However, many other operators can be correctly expanded by the current
code, so hopefully the allowlist can be gradually extended. It is
possible to disable the allowlist in the configuration, in which case
all functions are expanded (useful for testing).

Tools downstream of the importer may now need to do inlining when
consuming the output of the importer, e.g.:

  cat imported.mlir | torch-mlir-opt --inline --convert-onnx-to-torch

Explanations for subtle code changes:

- Looking up the correct schema and function for an operator requires
  knowing the opset version. NodeImporter retrieves this from the
  opset imports on the ModelProto retained by the GraphInfo. Previously,
  the model_proto field on GraphInfo was None when importing a subgraph
  in import_regions, but this conflicts with the new need for opset
  version info. Since the apparent purpose of setting it to None was to
  control how GraphInfo generates its input map, a new flag is added to
  GraphInfo (is_subgraph) to control this behavior, so that the actual
  ModelProto can now be provided without breaking this. This also turned
  out to be useful for getting the Config via ModelInfo via GraphInfo.
- Some operators' functions are context-dependent, which means the
  function definition depends on the types of the inputs. Therefore node
  importing now needs to look up the types of a node's inputs, not just
  its outputs as was the case previously. Consequently the operand to
  find_type_proto_for_name() may now be a graph input or initializer in
  some cases, so it has to be updated.
2024-06-14 10:11:26 -07:00
zjgarvey c0eb6d89c0
[ONNX] add some args to the onnx importer to assist shape_inference (#3445)
Adds the following arguments:
- "--clear-domain": enabling this flag (default False) will delete the
domain attribute from each node in the onnx model before importing.
Shape inference does not seem to work for onnx ops in custom domains. In
the rare case when these ops have a corresponding counterpart in base
onnx, enabling this flag might allow shape inference to work properly.
- "--opset-version": allows setting the opset version manually. This
will cause the importer to attempt to update the opset_version of the
onnx model before importing. Newer opset versions sometimes have more
robust shape inference patterns.
2024-06-12 10:55:14 -05:00
Xida Ren (Cedar) 33eef15e42
Support onnx.If (#2825)
This is probably a decent PR for learning about blocks and regions.

If you're here to learn about that, consider also looking at
lib/Conversion/TorchToSCF/TorchToSCF.cpp

While this doesn't include an e2e test, it is tested downstream in
https://github.com/nod-ai/SHARK-TestSuite/blob/main/e2eshark/onnx/operators/If/model.py

---------

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-30 18:36:40 +00:00
penguin_wwy b2185195e8
[NFC] Update black version (#3256)
* Update black version to support 3.11/3.12
* Reformat code
2024-04-29 11:06:01 +08:00
Stella Laurenzo 6877302504
[NFC reformat] Applies pre-commit formatting to Python files. (#3244)
This is a large change because prior to this point, Python files in the
project were not consistently formatted. This reformats them all with
black defaults.

Based on experience with prior projects, if you have a dev/long-term
branch with Python patches, you can minimize merge conflicts prior to
rebasing to include this commit by running `black` on your modified
Python files, squashing, and then rebasing/merging.
2024-04-27 14:16:31 -07:00
penguin_wwy f34c187ac4
Normalize type hints to be compatible with multiple Python versions (#3028)
Although we provide a wheel package for Python 3.8, it may actually
throw the following exception:
`TypeError: 'type' object is not subscriptable`
2024-03-15 08:29:48 -07:00
Scott Todd e7d90a4b82
[onnx] Fix type on create_module() in onnx_importer.py. (#2968)
The type returned was changed in
https://github.com/llvm/torch-mlir/pull/2795. This led to errors in the
downstream IREE project: https://github.com/openxla/iree/pull/16622.
2024-02-29 13:01:13 -08:00
Rob Suderman e48fe45886
[onnx] Import `onnx` import to pass remaining tests (#2951)
Finish supporting importing the vast majority of `onnx` operations. This
includes:
- region support
- region value inherentance
- `torch.string` support
- `torch.list` support
- `torch.optional` support
2024-02-28 12:18:02 -08:00
Rob Suderman 53f6d06ab8
[onnx] Drop `ConstantOfShape` logic form importer, fix torch lowering (#2930)
There is no reason to treat `ConstantOfShape` as a specialized import
any as there exists a onnx-to-torch equivalent. Dropping the import
coding and adding support for resource conversion substantially
increases test coverage for dynamically shaped tests.
2024-02-21 21:34:43 -08:00
Rob Suderman 13553d49c9
[onnx] Update the importer to create a `none` for missing operands (#2931)
Some operands are optional so we require a placeholder for missing
operands. We invent an `onnx.None` operation as our placeholder.
2024-02-20 09:30:30 -08:00
Rob Suderman 074f112d6a
[onnx] Add testing using the `onnx` compilation using torch tests (#2795)
We can route the torch tests via `onnx` using the `torch.onnx.export`
tooling. We can then reimport, lower to torch, and compile to linalg to
validate the onnx path is working correctly.

The current implementation exposes some failures in the `onnx` path so
we cannot enable the onnx test suite yet due to segmentation faults.
2024-02-15 10:17:13 -08:00
Rob Suderman 54e258792c
[onnx] Import `onnx` constants as `onnx.Constant` instead of literals (#2831)
To handle the conversion from raw bytes to `DenseElementsAttr` we need
to handle the endianness conversion during `torch-onnx-to-torch`.
Therefore when importing `onnx.Constant` it is better to represent using
the `onnx` constant operation so that only one location requires the
endianness correction.
2024-01-31 11:41:06 -08:00
Dave Liddell d452c4f4c0
Fix onnx importer to treat Constant values as static (#2780)
Fixes  https://github.com/llvm/torch-mlir/issues/2764

In the case of OPT, there are ConstantOfShape ops whose input shape is
not static (that is, an initializer), but rather comes from a Constant
op. The importer can't handle such non-static input shapes.

The fix here is to create initializers for a subset of Constant ops
(ones with "value" attributes), so that their outputs can be used
statically. Additionally, there was no case for creating a splat of
int64, so I added that as well.

---------

Co-authored-by: Dave Liddell <dliddell@xilinx.com>
2024-01-22 13:00:05 -08:00
Rob Suderman 85b86b36a2
[onnx] Fix importer variable names to make `mlir` legal (#2690)
Some names for `onnx` identifiers are not legal in `mlir-ir`. Sanitize
so that the generated `ir` is legal.
2023-12-21 17:05:18 -08:00
Stella Laurenzo 74f7a0c9d6
Upstream the ONNX importer. (#2636)
This is part 1 of 2, which will also include upstreaming the FX
importer. I started with ONNX because it forces some project layout
updates and is more self contained/easier as a first step.

Deviating somewhat from the RFCs on project layout, I made the following
decisions:

* Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks
already has opened up that namespace and it seemed to fit. Better to
have fewer things at that level.
* Setup the build so that the root project only contains MLIR Python and
pure Python deps (like the importers), but this can be augmented with
the `projects/` adding more depending on which features are enabled.
* The default build continues to build everything whereas in
`TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a
`torch-mlir-core` wheel with the pure contents only.

`onnx_importer.py` and `importer_smoke_test.py` are almost verbatim
copies from SHARK-Turbine. I made some minor local alterations to adapt
to paths and generalize the way they interact with the outer project. I
expect I can copy these back to Turbine verbatim from here. I also
updated the license boilerplate (they have the same license but slightly
different project norms for the headers) but retained the correct
copyright.

Other updates:

* Added the ONNX importer unit test (which also can generate test data)
in lit, conditioned on the availability of the Python `onnx` package. In
a followup once I know everything is stable, I'll add another env var
that the CI can set to always enable this so we know conclusively if
tests pass.
* Moved the ONNX conversion readme to `docs/`.
* Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` ->
`TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the
JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-12 19:02:51 -08:00