Commit Graph

61 Commits (7f2a17e7571b03e05a5cf329c8f271976281e280)

Author SHA1 Message Date
Sambhav Jain 3e836d8dad
[fx_importer] Convert non-persistent buffers lifted as tensor constants (#2902)
The investigation is largely recorded in
https://github.com/llvm/torch-mlir/pull/2881, but this change allows us
to capture non-persistent buffers that were lifted as tensor constants
(after https://github.com/pytorch/pytorch/pull/118969 landed in upstream
PyTorch), and propagate them to `Torch` dialect as "frozen"
`torch.vtensor.literal`. I believe this patch should work with both
nightly and stable PyTorch, but will let CI confirm the same. Thanks
@stellaraccident for the valuable pointers and guidance.

---------

Co-authored-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-02-13 12:38:32 -08:00
Aart Bik b6f4ca512e
[torch-mlir][sparse] sparsity metadata refinement (#2901)
Various improvements on sparsity metadata:

(1) define single data structure for all sparsity related metadata 
(2) handle batched dense dimensions, as well as dense subtensor
dimensions
(3) refine sparsity propagation for deeper networks
2024-02-12 16:10:57 -08:00
Aart Bik be8375d350
[torch-mlir][sparse] implement first sparse_jit end-to-end path (#2894)
This PR introduces a sparse_jit wrapper that can run simple models with
sparse tensor inputs end-to-end. The implementation shows all required
components on modifying sparse tensor types with a 1:N relation on the
call sites. Two tests shows that the JIT runs end-to-end while computing
the correct results.

More details to follow (generalizing to COO and different ranks, as well
as support for *output* sparse tensors), but the general concepts are
all here now.

**_Update: Thanks to Rob, bump to proper LLVM/MLIR hash is done!_**

_**NOTE that all parameter passing changes are nicely done "downstream"
in MLIR, so very little changes are required in torch-mlir code
proper**_

---------

Co-authored-by: Franz Haniel <77495327+frafranz@users.noreply.github.com>
Co-authored-by: Franz Haniel <franz.haniel@amd.com>
2024-02-12 10:04:54 -08:00
Daniel Garvey faf7d4aaa5
[fx_importer] Add support for 0D tensors (#2870)
Adds an escape hatch from creating a DenseResourceElementsAttr for
single value tensors into DenseElementsAttr.

For 0d or 1element, splats are better as DenseElementsAttr. Don't use
DenseResourceElementsAttr for it
2024-02-06 00:19:31 -06:00
Rob Suderman 54e258792c
[onnx] Import `onnx` constants as `onnx.Constant` instead of literals (#2831)
To handle the conversion from raw bytes to `DenseElementsAttr` we need
to handle the endianness conversion during `torch-onnx-to-torch`.
Therefore when importing `onnx.Constant` it is better to represent using
the `onnx` constant operation so that only one location requires the
endianness correction.
2024-01-31 11:41:06 -08:00
Aart Bik 105aad6f57
[torch-mlir] provide FX traced graph importer for sparse tensors (#2817)
Note that we are waiting for actual FX traced graph support for sparse
tensors. For details see

https://github.com/pytorch/pytorch/issues/117188

Until then, however, we provide this clever importer that builds the FX
traced graph for for the dense case and then puts a sparse annotation
back on the parameters.

With import test.
2024-01-30 21:22:12 -08:00
Yuanqiang Liu e73c5368fb
[FxImporter] make FxImporter to fit python<=3.9 (#2802)
As that torch with py3.9 is also used widely.
2024-01-26 09:01:47 +08:00
Dave Liddell d452c4f4c0
Fix onnx importer to treat Constant values as static (#2780)
Fixes  https://github.com/llvm/torch-mlir/issues/2764

In the case of OPT, there are ConstantOfShape ops whose input shape is
not static (that is, an initializer), but rather comes from a Constant
op. The importer can't handle such non-static input shapes.

The fix here is to create initializers for a subset of Constant ops
(ones with "value" attributes), so that their outputs can be used
statically. Additionally, there was no case for creating a splat of
int64, so I added that as well.

---------

Co-authored-by: Dave Liddell <dliddell@xilinx.com>
2024-01-22 13:00:05 -08:00
Rob Suderman 85b86b36a2
[onnx] Fix importer variable names to make `mlir` legal (#2690)
Some names for `onnx` identifiers are not legal in `mlir-ir`. Sanitize
so that the generated `ir` is legal.
2023-12-21 17:05:18 -08:00
Stella Laurenzo ccd469ca0d
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681)
Changes made during upstreaming:

* Removed comments attributing some copied code back to torch-mlir
(since it is now repatriated).
* Re-organized imports.
* Inlined RefMapping/RefTracker and TypeSubclassMap from an external
utility module.
* Added FxImporter class comments.
* Updated stack trace extraction to be fail safe.
* Added an entry-point for `import_frozen_exported_program` which uses
the shiny new upstream `torch.export.export()` API (versus the
lower-level/older API that Turbine is presently using). This
necessitated a small FX rewrite to line external state management up
with current conventions.
* Adapted one of Turbine's importer tests to go with this initial
submission. Turbine unfortunately has a lot of more-integration-ey
tests, and I would like to extract those as more of unit tests of the
importer features and upstream them that way vs trying to copy directly.
For now, one overall test with the initial submission gets us moving.

I acknowledge that there are some code quality things that could be
improved in this submission: this was authored over the course of many
months (and often via some trial and error). I would like to keep it
relatively converged with the downstream for the next few steps while
getting the test suite upstreamed. And then it will be easier to take a
hygienic pass through the code.

Including co-authors for contributors in the git log of the original
repository.

Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com>
Co-authored-by: Avinash Sharma <aviator1994@gmail.com>
Co-authored-by: Arham Khan <arhammkhan@gmail.com>
Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu>
Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-21 08:40:10 -08:00
Stella Laurenzo 74f7a0c9d6
Upstream the ONNX importer. (#2636)
This is part 1 of 2, which will also include upstreaming the FX
importer. I started with ONNX because it forces some project layout
updates and is more self contained/easier as a first step.

Deviating somewhat from the RFCs on project layout, I made the following
decisions:

* Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks
already has opened up that namespace and it seemed to fit. Better to
have fewer things at that level.
* Setup the build so that the root project only contains MLIR Python and
pure Python deps (like the importers), but this can be augmented with
the `projects/` adding more depending on which features are enabled.
* The default build continues to build everything whereas in
`TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a
`torch-mlir-core` wheel with the pure contents only.

`onnx_importer.py` and `importer_smoke_test.py` are almost verbatim
copies from SHARK-Turbine. I made some minor local alterations to adapt
to paths and generalize the way they interact with the outer project. I
expect I can copy these back to Turbine verbatim from here. I also
updated the license boilerplate (they have the same license but slightly
different project norms for the headers) but retained the correct
copyright.

Other updates:

* Added the ONNX importer unit test (which also can generate test data)
in lit, conditioned on the availability of the Python `onnx` package. In
a followup once I know everything is stable, I'll add another env var
that the CI can set to always enable this so we know conclusively if
tests pass.
* Moved the ONNX conversion readme to `docs/`.
* Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` ->
`TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the
JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-12 19:02:51 -08:00