Commit Graph

82 Commits (801452b2f48e75ba423512af81af1f9632a20a32)

Author SHA1 Message Date
Ashay Rane a9942f343a
Cache PyTorch source builds to reduce CI time (#1500)
* ci: cache PyTorch source builds

This patch reduces the time spent in regular CI builds by caching
PyTorch source builds.  Specifically, this patch:

1. Makes CI lookup the cache entry for the PyTorch commit hash in
   pytorch-version.txt
2. If lookup was successful, CI fetches the previously-generated WHL
   file into the build_tools/python/wheelhouse directory
3. CI sets the `TM_PYTORCH_INSTALL_WITHOUT_REBUILD` variable to `true`
4. The build_libtorch.sh script then uses the downloaded WHL file
   instead of rebuilding PyTorch

* ci: warm up PyTorch source cache during daily RollPyTorch action

This patch makes the RollPyTorch action write the updated WHL file to
the cache, so that it can be later retrieved by CI that runs for each
PR.  We deliberately add the caching step to the end of the action since
the RollPyTorch action never needs to read from the cache, although
executing this step earlier in the process should not cause problems
either.
2022-10-18 00:42:42 -05:00
Ashay Rane 8a8e779529
Disable auto-update of PyTorch version until CI script stabilizes (#1456)
Instead of letting the auto-update script either fail because of script
errors or letting it commit bad versions, this patch makes the update
process manual, for now.  Once the script stabilizes, I will its
re-enable periodic execution.
2022-10-04 03:02:44 -05:00
powderluv e6528f701a
Move CIs to use docker builds (#1316)
* Move CIs to use docker builds

Now that #1234 has landed and anyone can run CI / Release builds locally move GHA to use the same flow.

* update names

* Update comments
2022-09-02 18:35:40 -07:00
Sean Silva e16b43e20b Remove "torchscript" association from the e2e framework.
We use it for more than TorchScript testing now. This is a purely
mechanical change to adjust some file paths to remove "torchscript".

The most perceptible change here is that now e2e tests are run with

```
./tools/e2e_test.sh
instead of:
./tools/torchscript_e2e_test.sh
```
2022-08-29 14:10:03 -07:00
Sean Silva bcccf41d96 Add CI for generated files.
This ensures that they are always up to date.

This also updates the shape lib to make the new CI actually pass :)
2022-08-29 12:07:16 -07:00
powderluv c0630da678
Disable LTC by default until upstream revert relands (#1303)
* Disable LTC by default until upstream revert relands

Tracked with the WIP https://github.com/llvm/torch-mlir/pull/1292

* Disable LTC e2e tests temporarily

* Update setup.py

Disable LTC in setup.py temporarily until upstream is fixed.
2022-08-28 19:11:40 -07:00
Tanyo Kwok 2374098d71
[MHLO] Init end to end unit tests (#1223) 2022-08-23 16:47:21 +08:00
Henry Tu ba17a4d6c0
Reenable LTC in out-of-tree build (for real this time) (#1205)
* Fix OOT LTC CI build failure

* Disable LTC during macOS package gen

* Add more details about static TorchMLIRJITIRImporter library
2022-08-19 15:25:00 -04:00
Ashay Rane 606f4d2c0e
build: streamline options for enabling LTC and MHLO (#1221) 2022-08-12 23:49:28 -07:00
Sambhav Jain 34478ab1c7
[Build] Add concurrency groups to address long queue times (#1219)
We're seeing large CI queue times ([example](https://discord.com/channels/636084430946959380/742573221882364009/1007631811184164944)) especially with MacOS VMs on GHA. Part of the problem is follow-on commits to the same branch which trigger new runs while the previous runs are still in-progress, hogging on the scarce VMs.

This PR adds concurrency groups to the GHA workflow which ensures that only a single job or workflow using the same concurrency group will run at a time. This would cancel any in-progress jobs in the same github workflow and github ref (e.g. `refs/heads/main` or `refs/pull/<pr_number>/merge`).

As discussed on discord [thread](https://discord.com/channels/636084430946959380/1007787336848912386/1007787338895740928), once this lands we may have to closely monitor the workflows to see this didn't introduce unintended consequences. If so, we could either revert, or decide to selectively cancel particular runs (e.g. macos only which is the main bottleneck right now) instead of entire workflow.

This will also require some expectation management. As in, if you see an  on the main branch, it may not necessarily mean things broke, it could mean the run was killed by a more recent run. Making it a bit harder to traceback a failure to a commit in a sequence of commits (requiring to run those builds again).

Thanks @powderluv for the proposal and pointer to this! It should help with the scarce VMs on GHA and save on queue time. 

References:
* https://docs.github.com/en/actions/using-jobs/using-concurrency#example-only-cancel-in-progress-jobs-or-runs-for-the-current-workflow
* https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#example-only-cancel-in-progress-jobs-or-runs-for-the-current-workflow
2022-08-12 17:38:48 -07:00
Ashay Rane 1581d6a84c
build: fix typo in path (#1218)
When we renamed the directory containing submodules from `external` to
`externals`, we accidentally left the original name in the Github
workflow.  This patch fixes the problem.
2022-08-12 15:38:25 -07:00
Sambhav Jain aed0ec3a2c
Merge matrix runs to fail fast globally (#1216)
My earlier[ PR](https://github.com/llvm/torch-mlir/pull/1213) had (among other things) decoupled ubuntu and macos builds into separate matrix runs. This is not working well due to limited number of MacOS GHA VMs causing long queue times and backlog. There are two reasons causing this backlog: 

1. macos arm64 builds with pytorch source are getting erratically cancelled due to resource / network constraints. This is addressed with this: https://github.com/llvm/torch-mlir/pull/1215

> "macos-arm64 (in-tree, OFF) The hosted runner: GitHub Actions 3 lost communication with the server. Anything in your workflow that terminates the runner process, starves it for CPU/Memory, or blocks its network access can cause this error."

2. macos runs don't fail-fast when ubuntu runs fail due to being in separate matrix setups. This PR couples them again.
2022-08-12 11:30:09 -07:00
Sambhav Jain b8bd0a46cc
use pytorch binary for macos-arm64 builds (#1215) 2022-08-12 06:33:57 -07:00
Sambhav Jain f00ca91db0
Simplify matrix configuration for CI workflows (#1213)
Addresses https://github.com/llvm/torch-mlir/issues/1207. 

#### Provisioned jobs:
```
# ubuntu - x86_64 - llvm in-tree     - pytorch binary - build+test    # most used dev flow and fastest signal
# ubuntu - x86_64 - llvm out-of-tree - pytorch source - build+test    # most elaborate build
# macos  - arm64  - llvm in-tree     - pytorch source - build only    # cross compile, can't test arm64
```

#### Main changes
- [x] Spawn macos builds from a separate matrix (in the same workflow). It made sense to do this as they are fairly different from ubuntu (cross compile, use a different cmake configuration). This simplifies the matrix configuration and exclusions quite a bit, and makes the workflow a bit more tractable and maintenance friendly.
- [x] Remove the submodule md5sum step for ccache config. This was [broken](https://github.com/llvm/torch-mlir/runs/7779288734?check_suite_focus=true#step:3:145) for a while now.
- [x] Removes unused matrix options - `os`, `targetarch`, `python-version`, `llvmtype`.
- [x] Address ZSTD [comment](https://github.com/llvm/torch-mlir/pull/1204#discussion_r942349282) on @powderluv's cross compile [PR](https://github.com/llvm/torch-mlir/pull/1204). 

#### Further improvements (to be addressed in follow-on):
* ubuntu-x86_64 out-of-tree integration tests fail ([error](https://github.com/sjain-stanford/torch-mlir/runs/7781264029?check_suite_focus=true)); only run unit tests for now (tests are excluded in current CI too)

#### Passing workflow:
https://github.com/sjain-stanford/torch-mlir/actions/runs/2840676309
![image](https://user-images.githubusercontent.com/19234106/184194535-f3807991-401a-4cb9-b030-0ee8c334eba3.png)
2022-08-11 16:35:15 -07:00
powderluv 2342456356
mac m1 cross compile (#1204)
* mac m1 cross compile

Add support for M1 cross compile

* Remove redundant ExecutionEngine

It is registered as part of RegisterEverything

* nuke non-universal zstd

disable LTC
2022-08-10 08:48:39 -07:00
powderluv 9cf0b6e8ff
Disable out-of-tree and PyTorch binary (#1206) 2022-08-09 18:18:12 -07:00
Sambhav Jain b696362b7d
Enable OOT builds in CI (#1188) 2022-08-09 12:13:16 -07:00
Henry Tu 3e97a33c80
Revert "Reenable LTC in out-of-tree build (#1177)" (#1183)
This reverts commit f85ae9c685.
2022-08-08 18:58:35 -07:00
Henry Tu f85ae9c685
Reenable LTC in out-of-tree build (#1177) 2022-08-08 17:35:22 -04:00
Henry Tu e322f6a878
Update LTC CMake hack documentation (#1155)
* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update buildAndTest.yml

* Update setup.py

* Address review comments
2022-08-05 14:12:20 -04:00
powderluv 37a229cffc
Update buildAndTest.yml (#1145) 2022-08-03 12:50:54 -07:00
powderluv 0d25b6f10e
Fix cache-suffix name bug (#1138)
This should enabling better caching of builds.
2022-08-03 07:53:01 -07:00
Henry Tu 2c3b3606d0 Resolve remaining LTC CI failures (#1110)
* Replace CHECK_EQ with TORCH_CHECK_EQ

* Check value of TORCH_MLIR_USE_INSTALLED_PYTORCH during LTC build

* Update LTC XFAIL with NewZerosModule ops

* Explicitly blacklist _like ops

* Automatically blacklist new_/_like ops

* Prune away unused Python dependencies from LTC

* Add flag to disable LTC

* Autogen dummy _REFERENCE_LAZY_BACKEND library when LTC is disabled

* Implement compute_shape_var

* Removed Var tests from XFAIL Set

* XFAIL tests using _local_scalar_dense or index.Tensor

* Add StdDim tests to XFAIL set

* Autogen aten::cat
2022-07-30 09:40:02 -04:00
Antonio Kim de6c135dc3 Fix LTC autogen for CI with nightly PyTorch
- Update llvm-project pin to match main
2022-07-30 09:40:02 -04:00
Henry Tu dfcc26556a Added e2e LTC tests (#916)
* Added e2e LTC Torch MLIR tests

* Fix seed for reproducability

* Check if computation is None before getting debug string

* Updated unit tests, and added numeric tests

* Print name of the model layer that fails numeric validation

* Run LTC e2e test with CI/CD

* Set seed in main function, instead of beginning of execution

* Add comment to specify number of digits of precision

* Fixed typo

* Remove tests for LTC example models

* Added LTC option to torchscript e2e

* Implement compile and run for LTC e2e test

* xfail all tests that use ops that aren't currently supported
2022-07-30 09:40:02 -04:00
Jae Hoon (Antonio) Kim 2f22e2ef40 Add initial LTC backend (#610)
* Add initial LTC backend skeleton

* Disable CI build and move TorchMLIRPyTorch.cmake
2022-07-30 09:40:02 -04:00
powderluv db4a6991a0
buildAndTest.yml for matrix builds (#1098)
* Update buildAndTest.yml

test with fast-fail matrix builds

* Remove redundant and statement

* Downgrade to 20.04

Until upstream PyTorch FBGEMM is fixed to compile with clang+14+ https://github.com/pytorch/pytorch/pull/82396

* Update buildAndTest.yml

run tests on only the binary config.
2022-07-29 10:52:46 -07:00
powderluv 31fd812acf
Add linux and macOS source builds in CI (#1070)
This enables building Pytorch from source in the CI.
The build should mostly hit the ccache.
Release builds will follow once we have some runtime on the CI.
2022-07-21 14:16:03 -07:00
Ziheng Jiang c61c99e887
[MHLO] Init MHLO integration. (#1083)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-07-20 16:18:16 -07:00
Maksim Levental cec5aeedb0
add ci tests (#754) 2022-05-25 14:59:59 -05:00
powderluv c1026fa95b
Switch to using the new Release builds (#780) 2022-04-21 18:46:34 -07:00
Clément Fournier 578d0ec292 Review comments 2022-04-19 15:11:17 -07:00
Clément Fournier 3e0c1cf6af Change cache suffix to not invalidate existing caches 2022-04-19 15:11:17 -07:00
Clément Fournier 566650c5ae Use distinct ccaches
Since they run in distinct jobs, using the same ccache would
cause one job to overwrite the cache of the other.

See https://github.com/ljfitz/torch-mlir/pull/16 for a proof
that this works. The first build takes a long time but ccache
takes over in the dummy commit.
2022-04-19 15:11:17 -07:00
Clément Fournier f9d5201ae6 address PR review 2022-04-19 15:11:17 -07:00
Clément Fournier 4a2535a86d Add build-out-of-tree job 2022-04-19 15:11:17 -07:00
Clément Fournier 37087ccd5f Refactor current CI workflow into composable jobs 2022-04-19 15:11:17 -07:00
Sean Silva 8250f50c81 Attempt to set Python package version to the snapshot identifier.
This should make the releases sort properly when `pip`'s
`-f`/`--find-links` argument is used.
2022-03-30 17:54:11 +00:00
Sean Silva 3a96078571 Pin the CI to the latest working PyTorch.
I am investigating the breakage.

Also, fix "externals" rename in setup.py and some cases where we weren't
using `requirements.txt` consistently.

Also, fix a case where the packaging script would get confused due to
".." in the path name.
2022-03-29 15:02:17 -07:00
Ahmed S. Taei 8383497704
[NFC] Rename external -> externals (#699) 2022-03-26 09:12:27 -07:00
Yi Zhang 869daf3c22 Add TMTensor dialect to torch-mlir
This is intended to explore support for non-structured ops that can't
be modeled by Linalg dialect. `tm_tensor.scan` and `tm_tensor.scatter`
are added as the first such ops. The dialect should aim to be
upstreamed in the future.
2022-02-15 16:45:38 -05:00
Sean Silva c46d48f9f5 Make error reporting a bit better.
- Split out TOSA in the CI.
- Add summary of unexpected test outcomes. This works better when there
  are many XFAIL'ing tests, as it only prints out the error_str on
  FAIL, not on XFAIL. Example here:
  https://gist.github.com/silvasean/c7886ec7b3d35c21563cb09f7c3407da
2021-10-28 13:20:16 -07:00
Stella Laurenzo 92ae692387
Filter checks to only run on push to main branch. (#372)
Keeps redundent pull request and push workflows from running when pushing to branches in the main repo.
2021-10-21 21:23:21 -07:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
Sean Silva b6628fe774 Mark releases as "published".
This allows `pip` to see them.
2021-10-06 22:48:21 +00:00
Sean Silva 4a8d05e4a5 Add torch_mlir snapshot packages.
This closely follows IREE's
[schedule_snapshot_release.yml](f2f153d394/.github/workflows/schedule_snapshot_release.yml (L1))
workflow.

The snapshot releases can be installed with:
```
python -m pip install torch_mlir -f "https://github.com/llvm/torch-mlir/releases"
```
2021-10-06 14:50:31 -07:00
Sean Silva e687d39074 Update buildAndTest.yml 2021-09-27 17:11:08 -07:00
Sean Silva 0eb767ea45 Remove frontends/pytorch directory.
It just contained the e2e testing framework. We now fold it into the
main project to reduce complexity.

- `frontends/pytorch/python/` -> `python/torch_support`
- `frontends/pytorch/e2e_testing -> e2e_testing`
- `frontends/pytorch/examples -> examples`
- `frontends/pytorch/test` -> `python/test`
- `torch_mlir_torchscript` python module -> `npcomp_torchscript`
- `torch_mlir_torchscript_e2e_test_configs` python module ->
  `npcomp_torchscript_e2e_test_configs`

This also changes the license of a handful of files from the
"pytorch-style" license to the regular LLVM/npcomp license. The only
people who committed to those files were myself and Yi.
2021-09-17 09:27:49 -07:00
Sean Silva d94d6800fa Bring CI back to life.
This brings back `check-npcomp-all` and the refbackend e2e tests
coverage.
2021-09-16 12:07:32 -07:00
Sean Silva b6be96d722 [torch-mlir earthmoving (2/N)] Python code movement.
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.

As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.

torch-mlir has two top-level python packages (built into the
`python_packages` directory):

- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
  depend on PyTorch). This also involves building the aggregate CAPI for
  `torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
  PyTorch (or C++ code that transitively does).

Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):

- `npcomp_torch`: Contains the e2e test framework and testing configs
  that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
  IREE that `npcomp_torch` uses, along with its own
  `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
  python bindings. (all other functionality has been stripped out)

After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).

Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)

- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
  TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
  `frontends/pytorch` -- mainly things related to the e2e framework
  itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.

There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.

The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.

The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.

This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).

This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
2021-09-15 13:40:30 -07:00