This required some invasive surgery to graph_importer.h/cpp,
specifically moving most of it into node_importer.h/cpp and relayering
it. The abstraction that it had didn't work well in the recursive
setting that happens with prim::If.
The key observation is that torch::jit::Graph doesn't really correspond
directly to anything on the MLIR side. It's a weird combination of a
context, builder, and function and just holds a `torch::jit::Block`. It
is `torch::jit::Node` and `torch::jit::Block` which form the recursive
structure analogous to MLIR's operation/region/block. So
node_importer.h/cpp makes sense as a core building block.
As part of doing this, I did venture a bit into the AcapController code,
and realize now that there is functionality duplicated there with the
ivalue importer. Will refactor that soon.
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.
We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.
As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
* This has been anticipated for a long time in that it is quite hard to keep C++ binary compatibility across a system landscape as diverse as PyTorch, LLVM, and this project. This is why we based the PyTorch extension on the MLIR and NPCOMP C APIs only: that is the only sane linkage story for the entire matrix.
* Removes the few LLVM'isms in torch_mlir that had snuck in, using either STL or PyTorch support utilities. The new rule here is that LLVM C++ includes are forbidden at this level and (as stated in the design), torch_mlir should use the PyTorch runtime and support libraries (not introduce an incidental C++ dependency on LLVM).
* Also deletes mnist-playground as it was proving impossible to keep the grid of PyTorch vs system ABI divisions functioning. I am open to a less drastic course here (optional/disabled by default?)
* This gets us pretty close to just using PyTorch's extension builder API, which will be nice for distribution (i.e. it integrates well with the PyTorch ecosystem for deployment). I ended up just simplifying the in-tree CMake support for now.
* Fixes#138
* Does not handle all features yet but should conservatively fail on unsupported things.
* Location tracking is still somewhat mismatched between what TorchScript and MLIR do. Likely need a better heuristic for tracking locations from defs for nodes that do not carry location.
* Sets the ground-work for a specialized/generic split but only implements the generic side.
* Had some evidence that this requires a recent bump of PT nightly (within the last month) to pick up pybind11 2.6, which includes some cross-module symbol fixes (vs the previously sync'd version). No source changes, but older versions fail to cast function types at runtime.
* In most situations, this eliminates the need to explicitly set a path to the Torch cmake files.
* Also upgrades to new Python3 find package. (should eliminate 2.x mismatches)
* Since PyTorch is located by asking Python where it is, this eliminates a lot of causes of mismatch. (one source of truth)
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
* Exposes the op registry via a get_registered_ops method.
* Moves the aten dialect generation scripts in prep for integrating them with this facility.
* Make code that depends on the legacy "type dispatch" mechanism optional.
* This code is fairly tied to a specific ~1.3 version and uses a legacy dispatch mechanism.
* Moving it and making it optional allows the project to build with PyTorch 1.6 and makes it possible for us to start building out a more modern interface mechanism in parallel.
* Some of the moved code will be brought back into the more modern path, but isolating it now lets this be done incrementally.
* Tests are left failing since the entire frontend is optional and the next step involves reworking the interface mechanism to get them to passing in both regimes.
* Fix a few bogons to get things building
* Add Dockerfile with pytorch
Also, I configure with:
-DCMAKE_PREFIX_PATH="/opt/pytorch/pytorch"
(which is where pytorch is installed in this container)
* Make a dep conditional.
Co-authored-by: stephenneuendorffer <stephen.neuendorffer@xilinx.com>
This patch adds a pytorch interface to npcomp. This interface is modeled
after pytorch_xla and exposes the MLIR-based flow as a virtual device (similar
to a gpu device or the xla backend). Usage is intended to be something like:
dev = torch_mlir.mlir_device()
t0 = torch.randn((4,4), device=dev)
t1 = torch.randn((4,4), device=dev)
t2 = t0 + t1
t2_mlir = torch_mlir.get_mlir( t2 )
t2_cpu = t2.to('cpu')
In this case t2_cpu would contain the result of the computation, and t2_mlir
contains the mlir description of the computation. Note that this also
properly returns backward paths synthesized by pytorch. There are several
parts of this:
1) A tensor type (implemented by tensor.* and tensor_impl.*)
2) The device modeling (aten_mlir_bridge.*, aten_mlir_device.*, aten_mlir_type*)
3) a temporary IR (implemented by ir.cpp)
There is also a reference lowering directly from the ATen dialect to C
function calls consisting of two parts:
1) The driver that uses the IR to generate MLIR, run Passes and compile the
result using mlir::ExecutionEngine (implemented by jit.cpp and
mlir_gen.cpp)
2) A runtime library implemented by lib/aten_ops.cpp. Most of the operations
are implemented by callbacks into the torch C++ libraries.
Some aspects of this are known to be less than optimal, in particular:
1) There's some function definitions that don't live in the file corresponding
to their declaration.
2) More aspects of this (e.g. the IR) seem like they should be automatically
generated.
3) It's unclear to me how much of the 'IR' is actually necessary, or whether
MLIR could be created on the fly.
Note that this code is licensed in a way similar to pytorch, with the
intention that eventually (when npcomp reaches some maturity) it should be
pushed there. (see frontends/pytorch/LICENSE) The code is also structured
much closer to the pytorch coding style than the LLVM coding style.