Leaning on the QDQ functionality in torch we can support the QLinearConv
operation by piggybacking through `torch.Convolution`. This includes
some changes such as allowing the `onnx` rewriter to run recursively.
Doing so allows `QLinearConv` to decopmose to `onnx.Convolution` which
is then lowered to `torch`.
The existing `flatten` lowering did not define what the intermediate
shape was. This could result in failures to lower further to linalg as
the intermediate shape was unknown. Added a shape refinement section.
So that the CumSum Op in OPT can get the constant that it requires to be lowered to TMTensor
---------
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
`onnx` explicitly specifies that `raw_data` is stored in `little-endian`
layout. While converting
to `torch` we need to convert from a known endian format to an internal
format of consistent
layout. This means endianness must be correct during the import of
`onnx.Constant`.
---------
Co-authored-by: Xida Ren (Cedar) <cedar.ren@gmail.com>
We can make the per-tensor version of the operation to the dequantize
operation via marking with the make quantized tensor component. This
introductions the `qint*` and `quint*` tensor type that can be lowered
to teh appropriate dequantization behavior during the torch-to-linalg
conversion.
Handles the multiple cases of `onnx` constant values and converts them
to `torch` literal tensors. This can include splats with a single
integer or floating point value, a set of explicit integer values, or
an elements array attr of values.
This commit adds the OnnxToTorch support for BitwiseXor, BitwiseOr, Div, Equal, Cast,
Ceil, Floor, Cos, and Clip op.
This commit also adds the TorchToLinalg support for aten.clamp.Tensor and aten.clamp_min.Tensor op.
Signed-Off By: vivekkhandelwal1424@gmail.com
This commit adds the OnnxToTorch support for Atan, Bitshift, BitwiseAnd,
and BitwiseNot op.
This commit also adds the TorchToLinalg support for AtenBitwiseLeftShiftTensorOp.
Signed-Off By: vivekkhandelwal@nod-labs.com
Adds a pipeline to convert custom ops and metadata represented as
`torch.operator` custom ops to corresponding `torch` ops where possible.
This is part of a multi-part approach for building ONNX import in as a
regular feature of torch-mlir. It is focused on the conversions vs the
infra. We will end up maintaining a [pure-python
importer](https://github.com/nod-ai/SHARK-Turbine/blob/main/python/shark_turbine/importers/onnx_importer.py)
to go with this in torch-mlir, and we will also maintain test case
generation utilities derived from it.
I have left substantial documentation in the README of the conversion
directory, including the recommended approach that we will take to keep
building this out.
(note that this organizes the code to coincide with the refactoring in
#2442 versus the current flat arrangement)